The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation
We have compared the microsequence specificity of mutations introduced during somatic hypermutation (SH) and those introduced meiotically during neutral evolution. We have minimized the effects of selection by studying nonproductive (hence unselected) Ig V region genes for somatic mutations and proc...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2001-01, Vol.166 (2), p.892-899 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 899 |
---|---|
container_issue | 2 |
container_start_page | 892 |
container_title | The Journal of immunology (1950) |
container_volume | 166 |
creator | Oprea, Mihaela Cowell, Lindsay G Kepler, Thomas B |
description | We have compared the microsequence specificity of mutations introduced during somatic hypermutation (SH) and those introduced meiotically during neutral evolution. We have minimized the effects of selection by studying nonproductive (hence unselected) Ig V region genes for somatic mutations and processed pseudogenes for meiotic mutations. We find that the two sets of patterns are very similar: the mutabilities of nucleotide triplets are positively correlated between the somatic and meiotic sets. The major differences that do exist fall into three distinct categories: 1) The mutability is sharply higher at CG dinucleotides under meiotic but not somatic mutation. 2) The complementary triplets AGC and GCT are much more mutable under somatic than under meiotic mutation. 3) Triplets of the form WAN (W = T or A) are uniformly more mutable under somatic than under meiotic mutation. Nevertheless, the relative mutabilities both within this set and within the SAN (S = G or C) triplets are highly correlated with those under meiotic mutation. We also find that the somatic triplet specificity is strongly symmetric under strand exchange for A/T triplets as well as for G/C triplets in spite of the strong predominance of A over T mutations. Thus, we suggest that somatic mutation has at least two distinct components: one that specifically targets AGC/GCT triplets and another that acts as true catalysis of meiotic mutation. |
doi_str_mv | 10.4049/jimmunol.166.2.892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70565048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70565048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-286d61cae85feefc57daaf84597ba3dafc94cace0f78200994d7cc7a59d825803</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMotlb_gAuZlbupL2k-ZpZS1AoVUes6pJk37ZSkqZMZSv-9U1rp0tXjwrn3wSHklsKQA88fVpX37Tq4IZVyyIZZzs5InwoBqZQgz0kfgLGUKql65CrGFQBIYPyS9CilXEgp-uRjtsRkZuoFNtV6kYQy-QreNJVNJrsN1r5tuhDWydiFiG6XfGJEP3cYk9nSNHv-Dauw59-O6DW5KI2LeHO8A_L9_DQbT9Lp-8vr-HGaWg6iSVkmC0mtwUyUiKUVqjCmzLjI1dyMClPanFtjEUqVMYA854WyVhmRFxkTGYwG5P6wu6nDT4ux0b6KFp0zawxt1AqEFMCzf0GqlGCdjQ5kB9DWIcYaS72pK2_qnaag98b1n3HdGddMd8a70t1xvZ17LE6Vo-LT-2W1WG6rGnX0xrkOp3q73Z6WfgHmAY0f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17752566</pqid></control><display><type>article</type><title>The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Oprea, Mihaela ; Cowell, Lindsay G ; Kepler, Thomas B</creator><creatorcontrib>Oprea, Mihaela ; Cowell, Lindsay G ; Kepler, Thomas B</creatorcontrib><description>We have compared the microsequence specificity of mutations introduced during somatic hypermutation (SH) and those introduced meiotically during neutral evolution. We have minimized the effects of selection by studying nonproductive (hence unselected) Ig V region genes for somatic mutations and processed pseudogenes for meiotic mutations. We find that the two sets of patterns are very similar: the mutabilities of nucleotide triplets are positively correlated between the somatic and meiotic sets. The major differences that do exist fall into three distinct categories: 1) The mutability is sharply higher at CG dinucleotides under meiotic but not somatic mutation. 2) The complementary triplets AGC and GCT are much more mutable under somatic than under meiotic mutation. 3) Triplets of the form WAN (W = T or A) are uniformly more mutable under somatic than under meiotic mutation. Nevertheless, the relative mutabilities both within this set and within the SAN (S = G or C) triplets are highly correlated with those under meiotic mutation. We also find that the somatic triplet specificity is strongly symmetric under strand exchange for A/T triplets as well as for G/C triplets in spite of the strong predominance of A over T mutations. Thus, we suggest that somatic mutation has at least two distinct components: one that specifically targets AGC/GCT triplets and another that acts as true catalysis of meiotic mutation.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.166.2.892</identifier><identifier>PMID: 11145665</identifier><language>eng</language><publisher>United States: Am Assoc Immnol</publisher><subject>Base Sequence ; Binomial Distribution ; Computational Biology - methods ; Computational Biology - statistics & numerical data ; DNA Mutational Analysis - methods ; DNA Mutational Analysis - statistics & numerical data ; DNA, Complementary - genetics ; Evolution, Molecular ; Germ-Line Mutation ; Humans ; Immunoglobulin Variable Region - genetics ; Meiosis - genetics ; Meiosis - immunology ; Models, Immunological ; Mutation ; Pseudogenes - genetics ; Sequence Homology, Nucleic Acid ; somatic hypermutation ; Statistics, Nonparametric</subject><ispartof>The Journal of immunology (1950), 2001-01, Vol.166 (2), p.892-899</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-286d61cae85feefc57daaf84597ba3dafc94cace0f78200994d7cc7a59d825803</citedby><cites>FETCH-LOGICAL-c405t-286d61cae85feefc57daaf84597ba3dafc94cace0f78200994d7cc7a59d825803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11145665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oprea, Mihaela</creatorcontrib><creatorcontrib>Cowell, Lindsay G</creatorcontrib><creatorcontrib>Kepler, Thomas B</creatorcontrib><title>The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>We have compared the microsequence specificity of mutations introduced during somatic hypermutation (SH) and those introduced meiotically during neutral evolution. We have minimized the effects of selection by studying nonproductive (hence unselected) Ig V region genes for somatic mutations and processed pseudogenes for meiotic mutations. We find that the two sets of patterns are very similar: the mutabilities of nucleotide triplets are positively correlated between the somatic and meiotic sets. The major differences that do exist fall into three distinct categories: 1) The mutability is sharply higher at CG dinucleotides under meiotic but not somatic mutation. 2) The complementary triplets AGC and GCT are much more mutable under somatic than under meiotic mutation. 3) Triplets of the form WAN (W = T or A) are uniformly more mutable under somatic than under meiotic mutation. Nevertheless, the relative mutabilities both within this set and within the SAN (S = G or C) triplets are highly correlated with those under meiotic mutation. We also find that the somatic triplet specificity is strongly symmetric under strand exchange for A/T triplets as well as for G/C triplets in spite of the strong predominance of A over T mutations. Thus, we suggest that somatic mutation has at least two distinct components: one that specifically targets AGC/GCT triplets and another that acts as true catalysis of meiotic mutation.</description><subject>Base Sequence</subject><subject>Binomial Distribution</subject><subject>Computational Biology - methods</subject><subject>Computational Biology - statistics & numerical data</subject><subject>DNA Mutational Analysis - methods</subject><subject>DNA Mutational Analysis - statistics & numerical data</subject><subject>DNA, Complementary - genetics</subject><subject>Evolution, Molecular</subject><subject>Germ-Line Mutation</subject><subject>Humans</subject><subject>Immunoglobulin Variable Region - genetics</subject><subject>Meiosis - genetics</subject><subject>Meiosis - immunology</subject><subject>Models, Immunological</subject><subject>Mutation</subject><subject>Pseudogenes - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>somatic hypermutation</subject><subject>Statistics, Nonparametric</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEURYMotlb_gAuZlbupL2k-ZpZS1AoVUes6pJk37ZSkqZMZSv-9U1rp0tXjwrn3wSHklsKQA88fVpX37Tq4IZVyyIZZzs5InwoBqZQgz0kfgLGUKql65CrGFQBIYPyS9CilXEgp-uRjtsRkZuoFNtV6kYQy-QreNJVNJrsN1r5tuhDWydiFiG6XfGJEP3cYk9nSNHv-Dauw59-O6DW5KI2LeHO8A_L9_DQbT9Lp-8vr-HGaWg6iSVkmC0mtwUyUiKUVqjCmzLjI1dyMClPanFtjEUqVMYA854WyVhmRFxkTGYwG5P6wu6nDT4ux0b6KFp0zawxt1AqEFMCzf0GqlGCdjQ5kB9DWIcYaS72pK2_qnaag98b1n3HdGddMd8a70t1xvZ17LE6Vo-LT-2W1WG6rGnX0xrkOp3q73Z6WfgHmAY0f</recordid><startdate>20010115</startdate><enddate>20010115</enddate><creator>Oprea, Mihaela</creator><creator>Cowell, Lindsay G</creator><creator>Kepler, Thomas B</creator><general>Am Assoc Immnol</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20010115</creationdate><title>The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation</title><author>Oprea, Mihaela ; Cowell, Lindsay G ; Kepler, Thomas B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-286d61cae85feefc57daaf84597ba3dafc94cace0f78200994d7cc7a59d825803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Base Sequence</topic><topic>Binomial Distribution</topic><topic>Computational Biology - methods</topic><topic>Computational Biology - statistics & numerical data</topic><topic>DNA Mutational Analysis - methods</topic><topic>DNA Mutational Analysis - statistics & numerical data</topic><topic>DNA, Complementary - genetics</topic><topic>Evolution, Molecular</topic><topic>Germ-Line Mutation</topic><topic>Humans</topic><topic>Immunoglobulin Variable Region - genetics</topic><topic>Meiosis - genetics</topic><topic>Meiosis - immunology</topic><topic>Models, Immunological</topic><topic>Mutation</topic><topic>Pseudogenes - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>somatic hypermutation</topic><topic>Statistics, Nonparametric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oprea, Mihaela</creatorcontrib><creatorcontrib>Cowell, Lindsay G</creatorcontrib><creatorcontrib>Kepler, Thomas B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oprea, Mihaela</au><au>Cowell, Lindsay G</au><au>Kepler, Thomas B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2001-01-15</date><risdate>2001</risdate><volume>166</volume><issue>2</issue><spage>892</spage><epage>899</epage><pages>892-899</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>We have compared the microsequence specificity of mutations introduced during somatic hypermutation (SH) and those introduced meiotically during neutral evolution. We have minimized the effects of selection by studying nonproductive (hence unselected) Ig V region genes for somatic mutations and processed pseudogenes for meiotic mutations. We find that the two sets of patterns are very similar: the mutabilities of nucleotide triplets are positively correlated between the somatic and meiotic sets. The major differences that do exist fall into three distinct categories: 1) The mutability is sharply higher at CG dinucleotides under meiotic but not somatic mutation. 2) The complementary triplets AGC and GCT are much more mutable under somatic than under meiotic mutation. 3) Triplets of the form WAN (W = T or A) are uniformly more mutable under somatic than under meiotic mutation. Nevertheless, the relative mutabilities both within this set and within the SAN (S = G or C) triplets are highly correlated with those under meiotic mutation. We also find that the somatic triplet specificity is strongly symmetric under strand exchange for A/T triplets as well as for G/C triplets in spite of the strong predominance of A over T mutations. Thus, we suggest that somatic mutation has at least two distinct components: one that specifically targets AGC/GCT triplets and another that acts as true catalysis of meiotic mutation.</abstract><cop>United States</cop><pub>Am Assoc Immnol</pub><pmid>11145665</pmid><doi>10.4049/jimmunol.166.2.892</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2001-01, Vol.166 (2), p.892-899 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_proquest_miscellaneous_70565048 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Base Sequence Binomial Distribution Computational Biology - methods Computational Biology - statistics & numerical data DNA Mutational Analysis - methods DNA Mutational Analysis - statistics & numerical data DNA, Complementary - genetics Evolution, Molecular Germ-Line Mutation Humans Immunoglobulin Variable Region - genetics Meiosis - genetics Meiosis - immunology Models, Immunological Mutation Pseudogenes - genetics Sequence Homology, Nucleic Acid somatic hypermutation Statistics, Nonparametric |
title | The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Targeting%20of%20Somatic%20Hypermutation%20Closely%20Resembles%20That%20of%20Meiotic%20Mutation&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Oprea,%20Mihaela&rft.date=2001-01-15&rft.volume=166&rft.issue=2&rft.spage=892&rft.epage=899&rft.pages=892-899&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.166.2.892&rft_dat=%3Cproquest_cross%3E70565048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17752566&rft_id=info:pmid/11145665&rfr_iscdi=true |