Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions

The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an uprigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2007-07, Vol.97 (4), p.952-961
Hauptverfasser: Stephens, J.S, Cooper, J.A, Phelan, F.R. Jr, Dunkers, J.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 4
container_start_page 952
container_title Biotechnology and bioengineering
container_volume 97
creator Stephens, J.S
Cooper, J.A
Phelan, F.R. Jr
Dunkers, J.P
description The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.
doi_str_mv 10.1002/bit.21252
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70561772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30047068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModlu98A_oIFTwYtqTTDKZeGdbrQv1i7bolSGbTZa0s5OazFj77z3jrBYEKeSb55zznryEPKGwRwHY_iL0e4wywe6RGQUlS2AK7pMZANRlJRTbIts5X-BVNnX9kGxRSbmSks3It08u-SGH2BW-jdfFIsTkjO1jKjzO6qgIXZFDPxRhbVahW70q5t0Pl_uwMj1eC-vaFgXEteldCqbNGIAnTIE58yPywOObe7zZd8j52zdnh-_Kk4_H88PXJ6UVEljJXQPApVwoWHocwjaWes6l4pI11lInPWW4mNq72ldLAUJybqiRoqZKVjvkxZT3KsXvA8rT65BHaaZzcchaAnLY8J1gNeqAurkTpKpWY3EEn_8DXsQhdditZrSSQqmGI_RygmyKOSfn9VXCD003moIePdToof7tIbJPNwmHxdotb8mNaQjsbgCTrWl9Mp0N-ZZrGgFAR2X7E3cdWnfz_4r6YH72p3Q5RYTcu59_I0y61LXEXvSXD8ca1Of3_OjrqT5A_tnEexO1WSVUcX7KgFZAFVNNRatfryXJow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213759984</pqid></control><display><type>article</type><title>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stephens, J.S ; Cooper, J.A ; Phelan, F.R. Jr ; Dunkers, J.P</creator><creatorcontrib>Stephens, J.S ; Cooper, J.A ; Phelan, F.R. Jr ; Dunkers, J.P</creatorcontrib><description>The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (&gt;2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21252</identifier><identifier>PMID: 17149772</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biocompatible Materials - metabolism ; Biological and medical sciences ; bioreactor ; Bioreactors ; Biotechnology ; Cell culture ; Cell Culture Techniques ; Cell Line ; Cell Survival ; Clone Cells ; Culture Media ; Fluorescence in situ hybridization ; Fundamental and applied biological sciences. Psychology ; imaging ; Imaging, Three-Dimensional ; Membrane reactors ; Mice ; Osteoblasts - metabolism ; Perfusion ; perfusion flow ; Polyesters - metabolism ; Studies ; Substrate Specificity ; Three dimensional imaging ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods</subject><ispartof>Biotechnology and bioengineering, 2007-07, Vol.97 (4), p.952-961</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>(c) 2006 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jul 1, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</citedby><cites>FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21252$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21252$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18850011$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17149772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stephens, J.S</creatorcontrib><creatorcontrib>Cooper, J.A</creatorcontrib><creatorcontrib>Phelan, F.R. Jr</creatorcontrib><creatorcontrib>Dunkers, J.P</creatorcontrib><title>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (&gt;2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.</description><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biological and medical sciences</subject><subject>bioreactor</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Clone Cells</subject><subject>Culture Media</subject><subject>Fluorescence in situ hybridization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>Membrane reactors</subject><subject>Mice</subject><subject>Osteoblasts - metabolism</subject><subject>Perfusion</subject><subject>perfusion flow</subject><subject>Polyesters - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Three dimensional imaging</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModlu98A_oIFTwYtqTTDKZeGdbrQv1i7bolSGbTZa0s5OazFj77z3jrBYEKeSb55zznryEPKGwRwHY_iL0e4wywe6RGQUlS2AK7pMZANRlJRTbIts5X-BVNnX9kGxRSbmSks3It08u-SGH2BW-jdfFIsTkjO1jKjzO6qgIXZFDPxRhbVahW70q5t0Pl_uwMj1eC-vaFgXEteldCqbNGIAnTIE58yPywOObe7zZd8j52zdnh-_Kk4_H88PXJ6UVEljJXQPApVwoWHocwjaWes6l4pI11lInPWW4mNq72ldLAUJybqiRoqZKVjvkxZT3KsXvA8rT65BHaaZzcchaAnLY8J1gNeqAurkTpKpWY3EEn_8DXsQhdditZrSSQqmGI_RygmyKOSfn9VXCD003moIePdToof7tIbJPNwmHxdotb8mNaQjsbgCTrWl9Mp0N-ZZrGgFAR2X7E3cdWnfz_4r6YH72p3Q5RYTcu59_I0y61LXEXvSXD8ca1Of3_OjrqT5A_tnEexO1WSVUcX7KgFZAFVNNRatfryXJow</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Stephens, J.S</creator><creator>Cooper, J.A</creator><creator>Phelan, F.R. Jr</creator><creator>Dunkers, J.P</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</title><author>Stephens, J.S ; Cooper, J.A ; Phelan, F.R. Jr ; Dunkers, J.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biological and medical sciences</topic><topic>bioreactor</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Clone Cells</topic><topic>Culture Media</topic><topic>Fluorescence in situ hybridization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>Membrane reactors</topic><topic>Mice</topic><topic>Osteoblasts - metabolism</topic><topic>Perfusion</topic><topic>perfusion flow</topic><topic>Polyesters - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Three dimensional imaging</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephens, J.S</creatorcontrib><creatorcontrib>Cooper, J.A</creatorcontrib><creatorcontrib>Phelan, F.R. Jr</creatorcontrib><creatorcontrib>Dunkers, J.P</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephens, J.S</au><au>Cooper, J.A</au><au>Phelan, F.R. Jr</au><au>Dunkers, J.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>97</volume><issue>4</issue><spage>952</spage><epage>961</epage><pages>952-961</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (&gt;2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17149772</pmid><doi>10.1002/bit.21252</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2007-07, Vol.97 (4), p.952-961
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_70561772
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biocompatible Materials - metabolism
Biological and medical sciences
bioreactor
Bioreactors
Biotechnology
Cell culture
Cell Culture Techniques
Cell Line
Cell Survival
Clone Cells
Culture Media
Fluorescence in situ hybridization
Fundamental and applied biological sciences. Psychology
imaging
Imaging, Three-Dimensional
Membrane reactors
Mice
Osteoblasts - metabolism
Perfusion
perfusion flow
Polyesters - metabolism
Studies
Substrate Specificity
Three dimensional imaging
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
title Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perfusion%20flow%20bioreactor%20for%203D%20in%20situ%20imaging:%20Investigating%20cell/biomaterials%20interactions&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Stephens,%20J.S&rft.date=2007-07-01&rft.volume=97&rft.issue=4&rft.spage=952&rft.epage=961&rft.pages=952-961&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21252&rft_dat=%3Cproquest_cross%3E30047068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213759984&rft_id=info:pmid/17149772&rfr_iscdi=true