Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an uprigh...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2007-07, Vol.97 (4), p.952-961 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 4 |
container_start_page | 952 |
container_title | Biotechnology and bioengineering |
container_volume | 97 |
creator | Stephens, J.S Cooper, J.A Phelan, F.R. Jr Dunkers, J.P |
description | The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961. |
doi_str_mv | 10.1002/bit.21252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70561772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30047068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModlu98A_oIFTwYtqTTDKZeGdbrQv1i7bolSGbTZa0s5OazFj77z3jrBYEKeSb55zznryEPKGwRwHY_iL0e4wywe6RGQUlS2AK7pMZANRlJRTbIts5X-BVNnX9kGxRSbmSks3It08u-SGH2BW-jdfFIsTkjO1jKjzO6qgIXZFDPxRhbVahW70q5t0Pl_uwMj1eC-vaFgXEteldCqbNGIAnTIE58yPywOObe7zZd8j52zdnh-_Kk4_H88PXJ6UVEljJXQPApVwoWHocwjaWes6l4pI11lInPWW4mNq72ldLAUJybqiRoqZKVjvkxZT3KsXvA8rT65BHaaZzcchaAnLY8J1gNeqAurkTpKpWY3EEn_8DXsQhdditZrSSQqmGI_RygmyKOSfn9VXCD003moIePdToof7tIbJPNwmHxdotb8mNaQjsbgCTrWl9Mp0N-ZZrGgFAR2X7E3cdWnfz_4r6YH72p3Q5RYTcu59_I0y61LXEXvSXD8ca1Of3_OjrqT5A_tnEexO1WSVUcX7KgFZAFVNNRatfryXJow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213759984</pqid></control><display><type>article</type><title>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stephens, J.S ; Cooper, J.A ; Phelan, F.R. Jr ; Dunkers, J.P</creator><creatorcontrib>Stephens, J.S ; Cooper, J.A ; Phelan, F.R. Jr ; Dunkers, J.P</creatorcontrib><description>The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21252</identifier><identifier>PMID: 17149772</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biocompatible Materials - metabolism ; Biological and medical sciences ; bioreactor ; Bioreactors ; Biotechnology ; Cell culture ; Cell Culture Techniques ; Cell Line ; Cell Survival ; Clone Cells ; Culture Media ; Fluorescence in situ hybridization ; Fundamental and applied biological sciences. Psychology ; imaging ; Imaging, Three-Dimensional ; Membrane reactors ; Mice ; Osteoblasts - metabolism ; Perfusion ; perfusion flow ; Polyesters - metabolism ; Studies ; Substrate Specificity ; Three dimensional imaging ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods</subject><ispartof>Biotechnology and bioengineering, 2007-07, Vol.97 (4), p.952-961</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>(c) 2006 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jul 1, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</citedby><cites>FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21252$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21252$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18850011$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17149772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stephens, J.S</creatorcontrib><creatorcontrib>Cooper, J.A</creatorcontrib><creatorcontrib>Phelan, F.R. Jr</creatorcontrib><creatorcontrib>Dunkers, J.P</creatorcontrib><title>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.</description><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biological and medical sciences</subject><subject>bioreactor</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Clone Cells</subject><subject>Culture Media</subject><subject>Fluorescence in situ hybridization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>Membrane reactors</subject><subject>Mice</subject><subject>Osteoblasts - metabolism</subject><subject>Perfusion</subject><subject>perfusion flow</subject><subject>Polyesters - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Three dimensional imaging</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModlu98A_oIFTwYtqTTDKZeGdbrQv1i7bolSGbTZa0s5OazFj77z3jrBYEKeSb55zznryEPKGwRwHY_iL0e4wywe6RGQUlS2AK7pMZANRlJRTbIts5X-BVNnX9kGxRSbmSks3It08u-SGH2BW-jdfFIsTkjO1jKjzO6qgIXZFDPxRhbVahW70q5t0Pl_uwMj1eC-vaFgXEteldCqbNGIAnTIE58yPywOObe7zZd8j52zdnh-_Kk4_H88PXJ6UVEljJXQPApVwoWHocwjaWes6l4pI11lInPWW4mNq72ldLAUJybqiRoqZKVjvkxZT3KsXvA8rT65BHaaZzcchaAnLY8J1gNeqAurkTpKpWY3EEn_8DXsQhdditZrSSQqmGI_RygmyKOSfn9VXCD003moIePdToof7tIbJPNwmHxdotb8mNaQjsbgCTrWl9Mp0N-ZZrGgFAR2X7E3cdWnfz_4r6YH72p3Q5RYTcu59_I0y61LXEXvSXD8ca1Of3_OjrqT5A_tnEexO1WSVUcX7KgFZAFVNNRatfryXJow</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Stephens, J.S</creator><creator>Cooper, J.A</creator><creator>Phelan, F.R. Jr</creator><creator>Dunkers, J.P</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</title><author>Stephens, J.S ; Cooper, J.A ; Phelan, F.R. Jr ; Dunkers, J.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5702-4e800477b90df0df5c8c1f44794728cc1e7f12e7fa6fe6f3d505744a1a7561973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biological and medical sciences</topic><topic>bioreactor</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Clone Cells</topic><topic>Culture Media</topic><topic>Fluorescence in situ hybridization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>Membrane reactors</topic><topic>Mice</topic><topic>Osteoblasts - metabolism</topic><topic>Perfusion</topic><topic>perfusion flow</topic><topic>Polyesters - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Three dimensional imaging</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephens, J.S</creatorcontrib><creatorcontrib>Cooper, J.A</creatorcontrib><creatorcontrib>Phelan, F.R. Jr</creatorcontrib><creatorcontrib>Dunkers, J.P</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephens, J.S</au><au>Cooper, J.A</au><au>Phelan, F.R. Jr</au><au>Dunkers, J.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>97</volume><issue>4</issue><spage>952</spage><epage>961</epage><pages>952-961</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. Biotechnol. Bioeng. 2007;97: 952-961.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17149772</pmid><doi>10.1002/bit.21252</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2007-07, Vol.97 (4), p.952-961 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_70561772 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biocompatible Materials - metabolism Biological and medical sciences bioreactor Bioreactors Biotechnology Cell culture Cell Culture Techniques Cell Line Cell Survival Clone Cells Culture Media Fluorescence in situ hybridization Fundamental and applied biological sciences. Psychology imaging Imaging, Three-Dimensional Membrane reactors Mice Osteoblasts - metabolism Perfusion perfusion flow Polyesters - metabolism Studies Substrate Specificity Three dimensional imaging Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods |
title | Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perfusion%20flow%20bioreactor%20for%203D%20in%20situ%20imaging:%20Investigating%20cell/biomaterials%20interactions&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Stephens,%20J.S&rft.date=2007-07-01&rft.volume=97&rft.issue=4&rft.spage=952&rft.epage=961&rft.pages=952-961&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21252&rft_dat=%3Cproquest_cross%3E30047068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213759984&rft_id=info:pmid/17149772&rfr_iscdi=true |