Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells

Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2007-08, Vol.212 (2), p.386-400
Hauptverfasser: Kim, Aeyung, Oh, Jang-Hee, Park, Jong-Min, Chung, An-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 2
container_start_page 386
container_title Journal of cellular physiology
container_volume 212
creator Kim, Aeyung
Oh, Jang-Hee
Park, Jong-Min
Chung, An-Sik
description Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B16F10 cells, which are metastatic in the lungs of syngeneic C57BL/6J mice. Combined treatment with SeMet‐METase decreased the expression of integrins α4, β1, αν, and β3, and inhibited melanoma‐ECM adhesion. Caspase‐mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin‐mediated survival, were decreased upon treatment with SeMet‐METase while phosphorylation of p38, PKC‐δ, and IκBα increased. In the presence of specific inhibitors of p38, PKC‐δ, and NF‐κB, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet‐METase‐treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP‐ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet‐METase. Based on these results, we propose that combined treatment with SeMet‐METase induces caspase‐mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC‐δ, and NF‐κB is a prerequisite for the down‐regulation of integrin expression, followed by detachment‐mediated apoptosis. J. Cell. Physiol. 212: 386–400, 2007. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jcp.21038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70552932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70552932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-f77295b26dc85d9a27781be28673d851ac04321e97380e157e84b74ed0083eb33</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EokNhwQsgr5BYpPUljp0ljOgMVbkIFcHOcuKTwSWxUztRO0_Dq-I2Q1mxsnzO9__nhtBLSk4oIez0qh1PGCVcPUIrSmpZlJVgj9Eq52hRi5IeoWcpXRFC6przp-iISl4qQqoV-v0Rpp_7PkEPPvR4Bx6imcDiLoYBL-EhIy545wE3e_zwMwmwDTc-wm7usyZh5yfYRecx3I4RUsoYNt7muJ3bnG9NGrOqGMC6-yJmDOMUkks4dPgdrc4oyf69yTUNbqHv03P0pDO5vReH9xh9O3t_ud4WF583H9ZvL4qWV1QVnZSsFg2rbKuErQ2TUtEGmKokt0pQ05KSMwq15IoAFRJU2cgSLCGKQ8P5MXq9-I4xXM-QJj24dNeB8RDmpCURgtWcZfDNArYxpBSh02N0g4l7TYm-u4bO19D318jsq4Pp3OSZ_5GH9WfgdAFuXA_7_zvp8_WXv5bFonBpgtsHhYm_dB5VCv3900Zf_mDnX7dqqzf8D7-ypks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70552932</pqid></control><display><type>article</type><title>Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Aeyung ; Oh, Jang-Hee ; Park, Jong-Min ; Chung, An-Sik</creator><creatorcontrib>Kim, Aeyung ; Oh, Jang-Hee ; Park, Jong-Min ; Chung, An-Sik</creatorcontrib><description>Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B16F10 cells, which are metastatic in the lungs of syngeneic C57BL/6J mice. Combined treatment with SeMet‐METase decreased the expression of integrins α4, β1, αν, and β3, and inhibited melanoma‐ECM adhesion. Caspase‐mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin‐mediated survival, were decreased upon treatment with SeMet‐METase while phosphorylation of p38, PKC‐δ, and IκBα increased. In the presence of specific inhibitors of p38, PKC‐δ, and NF‐κB, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet‐METase‐treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP‐ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet‐METase. Based on these results, we propose that combined treatment with SeMet‐METase induces caspase‐mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC‐δ, and NF‐κB is a prerequisite for the down‐regulation of integrin expression, followed by detachment‐mediated apoptosis. J. Cell. Physiol. 212: 386–400, 2007. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.21038</identifier><identifier>PMID: 17348006</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Antineoplastic Agents - metabolism ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Carbon-Sulfur Lyases - metabolism ; Carbon-Sulfur Lyases - pharmacology ; Caspase Inhibitors ; Caspases - metabolism ; Cell Adhesion ; Cell Cycle ; Cell Proliferation ; Cell Shape ; Cell Survival ; Dose-Response Relationship, Drug ; Down-Regulation ; Enzyme Inhibitors - pharmacology ; Extracellular Matrix - metabolism ; Focal Adhesion Kinase 1 - metabolism ; I-kappa B Proteins - metabolism ; Integrins - metabolism ; Melanoma, Experimental - enzymology ; Melanoma, Experimental - metabolism ; Melanoma, Experimental - pathology ; Methanol - analogs &amp; derivatives ; Mice ; Organometallic Compounds - metabolism ; Organoselenium Compounds ; p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Protein Kinase C-delta - antagonists &amp; inhibitors ; Protein Kinase C-delta - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Selenomethionine - metabolism ; Selenomethionine - pharmacology ; Signal Transduction ; Skin Neoplasms - enzymology ; Skin Neoplasms - metabolism ; Skin Neoplasms - pathology ; Sodium Selenite - pharmacology</subject><ispartof>Journal of cellular physiology, 2007-08, Vol.212 (2), p.386-400</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3618-f77295b26dc85d9a27781be28673d851ac04321e97380e157e84b74ed0083eb33</citedby><cites>FETCH-LOGICAL-c3618-f77295b26dc85d9a27781be28673d851ac04321e97380e157e84b74ed0083eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.21038$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.21038$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17348006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Aeyung</creatorcontrib><creatorcontrib>Oh, Jang-Hee</creatorcontrib><creatorcontrib>Park, Jong-Min</creatorcontrib><creatorcontrib>Chung, An-Sik</creatorcontrib><title>Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B16F10 cells, which are metastatic in the lungs of syngeneic C57BL/6J mice. Combined treatment with SeMet‐METase decreased the expression of integrins α4, β1, αν, and β3, and inhibited melanoma‐ECM adhesion. Caspase‐mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin‐mediated survival, were decreased upon treatment with SeMet‐METase while phosphorylation of p38, PKC‐δ, and IκBα increased. In the presence of specific inhibitors of p38, PKC‐δ, and NF‐κB, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet‐METase‐treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP‐ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet‐METase. Based on these results, we propose that combined treatment with SeMet‐METase induces caspase‐mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC‐δ, and NF‐κB is a prerequisite for the down‐regulation of integrin expression, followed by detachment‐mediated apoptosis. J. Cell. Physiol. 212: 386–400, 2007. © 2007 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Antineoplastic Agents - metabolism</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Carbon-Sulfur Lyases - metabolism</subject><subject>Carbon-Sulfur Lyases - pharmacology</subject><subject>Caspase Inhibitors</subject><subject>Caspases - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell Cycle</subject><subject>Cell Proliferation</subject><subject>Cell Shape</subject><subject>Cell Survival</subject><subject>Dose-Response Relationship, Drug</subject><subject>Down-Regulation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Extracellular Matrix - metabolism</subject><subject>Focal Adhesion Kinase 1 - metabolism</subject><subject>I-kappa B Proteins - metabolism</subject><subject>Integrins - metabolism</subject><subject>Melanoma, Experimental - enzymology</subject><subject>Melanoma, Experimental - metabolism</subject><subject>Melanoma, Experimental - pathology</subject><subject>Methanol - analogs &amp; derivatives</subject><subject>Mice</subject><subject>Organometallic Compounds - metabolism</subject><subject>Organoselenium Compounds</subject><subject>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Kinase C-delta - antagonists &amp; inhibitors</subject><subject>Protein Kinase C-delta - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Selenomethionine - metabolism</subject><subject>Selenomethionine - pharmacology</subject><subject>Signal Transduction</subject><subject>Skin Neoplasms - enzymology</subject><subject>Skin Neoplasms - metabolism</subject><subject>Skin Neoplasms - pathology</subject><subject>Sodium Selenite - pharmacology</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhi0EokNhwQsgr5BYpPUljp0ljOgMVbkIFcHOcuKTwSWxUztRO0_Dq-I2Q1mxsnzO9__nhtBLSk4oIez0qh1PGCVcPUIrSmpZlJVgj9Eq52hRi5IeoWcpXRFC6przp-iISl4qQqoV-v0Rpp_7PkEPPvR4Bx6imcDiLoYBL-EhIy545wE3e_zwMwmwDTc-wm7usyZh5yfYRecx3I4RUsoYNt7muJ3bnG9NGrOqGMC6-yJmDOMUkks4dPgdrc4oyf69yTUNbqHv03P0pDO5vReH9xh9O3t_ud4WF583H9ZvL4qWV1QVnZSsFg2rbKuErQ2TUtEGmKokt0pQ05KSMwq15IoAFRJU2cgSLCGKQ8P5MXq9-I4xXM-QJj24dNeB8RDmpCURgtWcZfDNArYxpBSh02N0g4l7TYm-u4bO19D318jsq4Pp3OSZ_5GH9WfgdAFuXA_7_zvp8_WXv5bFonBpgtsHhYm_dB5VCv3900Zf_mDnX7dqqzf8D7-ypks</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Kim, Aeyung</creator><creator>Oh, Jang-Hee</creator><creator>Park, Jong-Min</creator><creator>Chung, An-Sik</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200708</creationdate><title>Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells</title><author>Kim, Aeyung ; Oh, Jang-Hee ; Park, Jong-Min ; Chung, An-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-f77295b26dc85d9a27781be28673d851ac04321e97380e157e84b74ed0083eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - metabolism</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Carbon-Sulfur Lyases - metabolism</topic><topic>Carbon-Sulfur Lyases - pharmacology</topic><topic>Caspase Inhibitors</topic><topic>Caspases - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell Cycle</topic><topic>Cell Proliferation</topic><topic>Cell Shape</topic><topic>Cell Survival</topic><topic>Dose-Response Relationship, Drug</topic><topic>Down-Regulation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Extracellular Matrix - metabolism</topic><topic>Focal Adhesion Kinase 1 - metabolism</topic><topic>I-kappa B Proteins - metabolism</topic><topic>Integrins - metabolism</topic><topic>Melanoma, Experimental - enzymology</topic><topic>Melanoma, Experimental - metabolism</topic><topic>Melanoma, Experimental - pathology</topic><topic>Methanol - analogs &amp; derivatives</topic><topic>Mice</topic><topic>Organometallic Compounds - metabolism</topic><topic>Organoselenium Compounds</topic><topic>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Kinase C-delta - antagonists &amp; inhibitors</topic><topic>Protein Kinase C-delta - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Selenomethionine - metabolism</topic><topic>Selenomethionine - pharmacology</topic><topic>Signal Transduction</topic><topic>Skin Neoplasms - enzymology</topic><topic>Skin Neoplasms - metabolism</topic><topic>Skin Neoplasms - pathology</topic><topic>Sodium Selenite - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Aeyung</creatorcontrib><creatorcontrib>Oh, Jang-Hee</creatorcontrib><creatorcontrib>Park, Jong-Min</creatorcontrib><creatorcontrib>Chung, An-Sik</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Aeyung</au><au>Oh, Jang-Hee</au><au>Park, Jong-Min</au><au>Chung, An-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2007-08</date><risdate>2007</risdate><volume>212</volume><issue>2</issue><spage>386</spage><epage>400</epage><pages>386-400</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B16F10 cells, which are metastatic in the lungs of syngeneic C57BL/6J mice. Combined treatment with SeMet‐METase decreased the expression of integrins α4, β1, αν, and β3, and inhibited melanoma‐ECM adhesion. Caspase‐mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin‐mediated survival, were decreased upon treatment with SeMet‐METase while phosphorylation of p38, PKC‐δ, and IκBα increased. In the presence of specific inhibitors of p38, PKC‐δ, and NF‐κB, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet‐METase‐treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP‐ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet‐METase. Based on these results, we propose that combined treatment with SeMet‐METase induces caspase‐mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC‐δ, and NF‐κB is a prerequisite for the down‐regulation of integrin expression, followed by detachment‐mediated apoptosis. J. Cell. Physiol. 212: 386–400, 2007. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17348006</pmid><doi>10.1002/jcp.21038</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2007-08, Vol.212 (2), p.386-400
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_70552932
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Antineoplastic Agents - metabolism
Antineoplastic Agents - pharmacology
Apoptosis - drug effects
Carbon-Sulfur Lyases - metabolism
Carbon-Sulfur Lyases - pharmacology
Caspase Inhibitors
Caspases - metabolism
Cell Adhesion
Cell Cycle
Cell Proliferation
Cell Shape
Cell Survival
Dose-Response Relationship, Drug
Down-Regulation
Enzyme Inhibitors - pharmacology
Extracellular Matrix - metabolism
Focal Adhesion Kinase 1 - metabolism
I-kappa B Proteins - metabolism
Integrins - metabolism
Melanoma, Experimental - enzymology
Melanoma, Experimental - metabolism
Melanoma, Experimental - pathology
Methanol - analogs & derivatives
Mice
Organometallic Compounds - metabolism
Organoselenium Compounds
p38 Mitogen-Activated Protein Kinases - antagonists & inhibitors
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Protein Kinase C-delta - antagonists & inhibitors
Protein Kinase C-delta - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Selenomethionine - metabolism
Selenomethionine - pharmacology
Signal Transduction
Skin Neoplasms - enzymology
Skin Neoplasms - metabolism
Skin Neoplasms - pathology
Sodium Selenite - pharmacology
title Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylselenol%20generated%20from%20selenomethionine%20by%20methioninase%20downregulates%20integrin%20expression%20and%20induces%20caspase-mediated%20apoptosis%20of%20B16F10%20melanoma%20cells&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Kim,%20Aeyung&rft.date=2007-08&rft.volume=212&rft.issue=2&rft.spage=386&rft.epage=400&rft.pages=386-400&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.21038&rft_dat=%3Cproquest_cross%3E70552932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70552932&rft_id=info:pmid/17348006&rfr_iscdi=true