Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells

Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2007-08, Vol.212 (2), p.386-400
Hauptverfasser: Kim, Aeyung, Oh, Jang-Hee, Park, Jong-Min, Chung, An-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B16F10 cells, which are metastatic in the lungs of syngeneic C57BL/6J mice. Combined treatment with SeMet‐METase decreased the expression of integrins α4, β1, αν, and β3, and inhibited melanoma‐ECM adhesion. Caspase‐mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin‐mediated survival, were decreased upon treatment with SeMet‐METase while phosphorylation of p38, PKC‐δ, and IκBα increased. In the presence of specific inhibitors of p38, PKC‐δ, and NF‐κB, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet‐METase‐treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP‐ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet‐METase. Based on these results, we propose that combined treatment with SeMet‐METase induces caspase‐mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC‐δ, and NF‐κB is a prerequisite for the down‐regulation of integrin expression, followed by detachment‐mediated apoptosis. J. Cell. Physiol. 212: 386–400, 2007. © 2007 Wiley‐Liss, Inc.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.21038