Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations

A metabolic flux model was constructed for the yeast Saccharomyces cerevisiae comprising the most important reactions during anaerobic metabolism of xylose and glucose. The model was used to calculate the intracellular fluxes in a recombinant, xylose‐utilizing strain of S. cerevisiae (TMB 3001) grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2001-02, Vol.72 (3), p.289-296
Hauptverfasser: Wahlbom, C. Fredrik, Eliasson, Anna, Hahn-Hägerdal, Bärbel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 3
container_start_page 289
container_title Biotechnology and bioengineering
container_volume 72
creator Wahlbom, C. Fredrik
Eliasson, Anna
Hahn-Hägerdal, Bärbel
description A metabolic flux model was constructed for the yeast Saccharomyces cerevisiae comprising the most important reactions during anaerobic metabolism of xylose and glucose. The model was used to calculate the intracellular fluxes in a recombinant, xylose‐utilizing strain of S. cerevisiae (TMB 3001) grown anaerobically in a defined medium at dilution rates of 0.03, 0.06, and 0.18 h−1. The feed concentration was varied from 0 g/L xylose and 20 g/L glucose to a mixture of 15 g/L xylose and 5 g/L glucose, so that the total concentration of carbon source was kept at 20 g/L. The specific uptake of xylose increased with the xylose concentration in the feed and with increasing dilution rate. The excreted xylitol was less than half of the xylose consumed. With increasing xylose concentration in the feed, the fluxes in the pentose phosphate pathway increased, whereas the flux through glycolysis decreased. Under all cultivation conditions, nicotinamide adenine dinucleotide (NADH) was the preferred cofactor for xylose reductase. The model showed that the flux through the reaction from ribulose 5‐phosphate to xylulose 5‐phosphate was very low under all cultivation conditions. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 72: 289–296, 2001.
doi_str_mv 10.1002/1097-0290(20010205)72:3<289::AID-BIT5>3.0.CO;2-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70550849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70550849</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4475-7458c19d7fd00a67bc26af8ad30d5326cf713c7e0e27834d4f985730594100e63</originalsourceid><addsrcrecordid>eNqFktFu0zAUhiMEYmXwCsgSEoKLlGM7juOCkLbARqVCBQxxabmOMwyuM-xktDwLD4tDu3K5K_vI3_l1dPxlWYVhigHICwyC50AEPCMAGAiw55zM6CtSidnsZP4mP51fsNd0CtN6-ZLk4k42ObTczSYAUOaUCXKUPYjxeyp5VZb3syOMMWVYVJPsz9z3QWnj3OBUQK0bNiYi65FCwehuvbJe-R5ttq6LJh966-xv6y_RZ6X1NxW69VYnXptgrm20yiA9uN5eq940SHllQreyWjm3RapHjW3bRPrx5lJW51FIZExkg1qTWnTntRknGh_jw-xeq1w0j_bncfbl7O1F_S5fLM_n9ckivywKznJesEpj0fC2AVAlX2lSqrZSDYWGUVLqlmOquQFDeEWLpmhFxTgFJoq0ZVPS4-zpLvcqdD8HE3u5tnHcifKmG6LkwBhUhbgVJLgoS14Wt4K4wowRMoKP9-CwWptGXgW7VmErb34oAU_2gIppkW1QXtt44CousMCJ-rijfllntv9TQI4eyVEKOUohbzySnEgqk0cyaSRHjVIJsl5KIsW_OmXmu0wbe7M5ZKrwQ5accia_fjiXi9Oz-hMT72VN_wKTR9A7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18155224</pqid></control><display><type>article</type><title>Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wahlbom, C. Fredrik ; Eliasson, Anna ; Hahn-Hägerdal, Bärbel</creator><creatorcontrib>Wahlbom, C. Fredrik ; Eliasson, Anna ; Hahn-Hägerdal, Bärbel</creatorcontrib><description>A metabolic flux model was constructed for the yeast Saccharomyces cerevisiae comprising the most important reactions during anaerobic metabolism of xylose and glucose. The model was used to calculate the intracellular fluxes in a recombinant, xylose‐utilizing strain of S. cerevisiae (TMB 3001) grown anaerobically in a defined medium at dilution rates of 0.03, 0.06, and 0.18 h−1. The feed concentration was varied from 0 g/L xylose and 20 g/L glucose to a mixture of 15 g/L xylose and 5 g/L glucose, so that the total concentration of carbon source was kept at 20 g/L. The specific uptake of xylose increased with the xylose concentration in the feed and with increasing dilution rate. The excreted xylitol was less than half of the xylose consumed. With increasing xylose concentration in the feed, the fluxes in the pentose phosphate pathway increased, whereas the flux through glycolysis decreased. Under all cultivation conditions, nicotinamide adenine dinucleotide (NADH) was the preferred cofactor for xylose reductase. The model showed that the flux through the reaction from ribulose 5‐phosphate to xylulose 5‐phosphate was very low under all cultivation conditions. © 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 72: 289–296, 2001.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/1097-0290(20010205)72:3&lt;289::AID-BIT5&gt;3.0.CO;2-9</identifier><identifier>PMID: 11135198</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Aldehyde Reductase - metabolism ; Anaerobiosis ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biomass ; Biotechnology ; Carbon ; Citric Acid Cycle ; continuous cultivation ; Culture Media - chemistry ; Ethanol - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - metabolism ; metabolic flux analysis ; Metabolism ; Mission oriented research ; Models, Biological ; NAD - metabolism ; NADH ; NADH utilization of xylose reductase ; pentose phosphate ; Pentose Phosphate Pathway ; Phosphates ; Physiology and metabolism ; Plant cell culture ; Pyruvic Acid - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; xylitol ; Xylose ; Xylose - metabolism ; xylose fermentation</subject><ispartof>Biotechnology and bioengineering, 2001-02, Vol.72 (3), p.289-296</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Inc.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2001 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0290%2820010205%2972%3A3%3C289%3A%3AAID-BIT5%3E3.0.CO%3B2-9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0290%2820010205%2972%3A3%3C289%3A%3AAID-BIT5%3E3.0.CO%3B2-9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=879191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11135198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahlbom, C. Fredrik</creatorcontrib><creatorcontrib>Eliasson, Anna</creatorcontrib><creatorcontrib>Hahn-Hägerdal, Bärbel</creatorcontrib><title>Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A metabolic flux model was constructed for the yeast Saccharomyces cerevisiae comprising the most important reactions during anaerobic metabolism of xylose and glucose. The model was used to calculate the intracellular fluxes in a recombinant, xylose‐utilizing strain of S. cerevisiae (TMB 3001) grown anaerobically in a defined medium at dilution rates of 0.03, 0.06, and 0.18 h−1. The feed concentration was varied from 0 g/L xylose and 20 g/L glucose to a mixture of 15 g/L xylose and 5 g/L glucose, so that the total concentration of carbon source was kept at 20 g/L. The specific uptake of xylose increased with the xylose concentration in the feed and with increasing dilution rate. The excreted xylitol was less than half of the xylose consumed. With increasing xylose concentration in the feed, the fluxes in the pentose phosphate pathway increased, whereas the flux through glycolysis decreased. Under all cultivation conditions, nicotinamide adenine dinucleotide (NADH) was the preferred cofactor for xylose reductase. The model showed that the flux through the reaction from ribulose 5‐phosphate to xylulose 5‐phosphate was very low under all cultivation conditions. © 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 72: 289–296, 2001.</description><subject>Aldehyde Reductase - metabolism</subject><subject>Anaerobiosis</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Citric Acid Cycle</subject><subject>continuous cultivation</subject><subject>Culture Media - chemistry</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>metabolic flux analysis</subject><subject>Metabolism</subject><subject>Mission oriented research</subject><subject>Models, Biological</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>NADH utilization of xylose reductase</subject><subject>pentose phosphate</subject><subject>Pentose Phosphate Pathway</subject><subject>Phosphates</subject><subject>Physiology and metabolism</subject><subject>Plant cell culture</subject><subject>Pyruvic Acid - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>xylitol</subject><subject>Xylose</subject><subject>Xylose - metabolism</subject><subject>xylose fermentation</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFktFu0zAUhiMEYmXwCsgSEoKLlGM7juOCkLbARqVCBQxxabmOMwyuM-xktDwLD4tDu3K5K_vI3_l1dPxlWYVhigHICwyC50AEPCMAGAiw55zM6CtSidnsZP4mP51fsNd0CtN6-ZLk4k42ObTczSYAUOaUCXKUPYjxeyp5VZb3syOMMWVYVJPsz9z3QWnj3OBUQK0bNiYi65FCwehuvbJe-R5ttq6LJh966-xv6y_RZ6X1NxW69VYnXptgrm20yiA9uN5eq940SHllQreyWjm3RapHjW3bRPrx5lJW51FIZExkg1qTWnTntRknGh_jw-xeq1w0j_bncfbl7O1F_S5fLM_n9ckivywKznJesEpj0fC2AVAlX2lSqrZSDYWGUVLqlmOquQFDeEWLpmhFxTgFJoq0ZVPS4-zpLvcqdD8HE3u5tnHcifKmG6LkwBhUhbgVJLgoS14Wt4K4wowRMoKP9-CwWptGXgW7VmErb34oAU_2gIppkW1QXtt44CousMCJ-rijfllntv9TQI4eyVEKOUohbzySnEgqk0cyaSRHjVIJsl5KIsW_OmXmu0wbe7M5ZKrwQ5accia_fjiXi9Oz-hMT72VN_wKTR9A7</recordid><startdate>20010205</startdate><enddate>20010205</enddate><creator>Wahlbom, C. Fredrik</creator><creator>Eliasson, Anna</creator><creator>Hahn-Hägerdal, Bärbel</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010205</creationdate><title>Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations</title><author>Wahlbom, C. Fredrik ; Eliasson, Anna ; Hahn-Hägerdal, Bärbel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4475-7458c19d7fd00a67bc26af8ad30d5326cf713c7e0e27834d4f985730594100e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aldehyde Reductase - metabolism</topic><topic>Anaerobiosis</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Citric Acid Cycle</topic><topic>continuous cultivation</topic><topic>Culture Media - chemistry</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>metabolic flux analysis</topic><topic>Metabolism</topic><topic>Mission oriented research</topic><topic>Models, Biological</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>NADH utilization of xylose reductase</topic><topic>pentose phosphate</topic><topic>Pentose Phosphate Pathway</topic><topic>Phosphates</topic><topic>Physiology and metabolism</topic><topic>Plant cell culture</topic><topic>Pyruvic Acid - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>xylitol</topic><topic>Xylose</topic><topic>Xylose - metabolism</topic><topic>xylose fermentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahlbom, C. Fredrik</creatorcontrib><creatorcontrib>Eliasson, Anna</creatorcontrib><creatorcontrib>Hahn-Hägerdal, Bärbel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahlbom, C. Fredrik</au><au>Eliasson, Anna</au><au>Hahn-Hägerdal, Bärbel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2001-02-05</date><risdate>2001</risdate><volume>72</volume><issue>3</issue><spage>289</spage><epage>296</epage><pages>289-296</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>A metabolic flux model was constructed for the yeast Saccharomyces cerevisiae comprising the most important reactions during anaerobic metabolism of xylose and glucose. The model was used to calculate the intracellular fluxes in a recombinant, xylose‐utilizing strain of S. cerevisiae (TMB 3001) grown anaerobically in a defined medium at dilution rates of 0.03, 0.06, and 0.18 h−1. The feed concentration was varied from 0 g/L xylose and 20 g/L glucose to a mixture of 15 g/L xylose and 5 g/L glucose, so that the total concentration of carbon source was kept at 20 g/L. The specific uptake of xylose increased with the xylose concentration in the feed and with increasing dilution rate. The excreted xylitol was less than half of the xylose consumed. With increasing xylose concentration in the feed, the fluxes in the pentose phosphate pathway increased, whereas the flux through glycolysis decreased. Under all cultivation conditions, nicotinamide adenine dinucleotide (NADH) was the preferred cofactor for xylose reductase. The model showed that the flux through the reaction from ribulose 5‐phosphate to xylulose 5‐phosphate was very low under all cultivation conditions. © 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 72: 289–296, 2001.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11135198</pmid><doi>10.1002/1097-0290(20010205)72:3&lt;289::AID-BIT5&gt;3.0.CO;2-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2001-02, Vol.72 (3), p.289-296
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_70550849
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aldehyde Reductase - metabolism
Anaerobiosis
Biological and medical sciences
Biology of microorganisms of confirmed or potential industrial interest
Biomass
Biotechnology
Carbon
Citric Acid Cycle
continuous cultivation
Culture Media - chemistry
Ethanol - metabolism
Fermentation
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - metabolism
metabolic flux analysis
Metabolism
Mission oriented research
Models, Biological
NAD - metabolism
NADH
NADH utilization of xylose reductase
pentose phosphate
Pentose Phosphate Pathway
Phosphates
Physiology and metabolism
Plant cell culture
Pyruvic Acid - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - metabolism
xylitol
Xylose
Xylose - metabolism
xylose fermentation
title Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20fluxes%20in%20a%20recombinant%20xylose-utilizing%20Saccharomyces%20cerevisiae%20cultivated%20anaerobically%20at%20different%20dilution%20rates%20and%20feed%20concentrations&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Wahlbom,%20C.%20Fredrik&rft.date=2001-02-05&rft.volume=72&rft.issue=3&rft.spage=289&rft.epage=296&rft.pages=289-296&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/1097-0290(20010205)72:3%3C289::AID-BIT5%3E3.0.CO;2-9&rft_dat=%3Cproquest_pubme%3E70550849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18155224&rft_id=info:pmid/11135198&rfr_iscdi=true