Efficient electrostatic solvation model for protein-fragment docking

A method is presented for the fast evaluation of the binding energy of a protein‐small molecule complex with electrostatic solvation. It makes use of a fast preprocessing step based on the assumption that the main contribution to electrostatic desolvation upon ligand binding originates from the disp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2001-02, Vol.42 (2), p.256-268
Hauptverfasser: Majeux, Nicolas, Scarsi, Marco, Caflisch, Amedeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 2
container_start_page 256
container_title Proteins, structure, function, and bioinformatics
container_volume 42
creator Majeux, Nicolas
Scarsi, Marco
Caflisch, Amedeo
description A method is presented for the fast evaluation of the binding energy of a protein‐small molecule complex with electrostatic solvation. It makes use of a fast preprocessing step based on the assumption that the main contribution to electrostatic desolvation upon ligand binding originates from the displacement of the first shell of water molecules. For a rigid protein, the precomputation of the energy contributions on a set of grids allows the estimation of the energy in solution of about 300 protein‐fragment binding modes per second on a personal computer. The docking procedure is applied to five rigid binding sites whose size ranges from 17 residues to a whole protein of 107 amino acids. Using a library of 70 mainly rigid molecules, known micromolar inhibitors or close analogs are docked and prioritized correctly. The docking based rank‐ordering of the library requires about 5 h and is proposed as a complementary approach to structure‐activity relationships by nuclear magnetic resonance. Proteins 2001;42:256–268. © 2000 Wiley‐Liss, Inc.
doi_str_mv 10.1002/1097-0134(20010201)42:2<256::AID-PROT130>3.0.CO;2-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70548043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70548043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4010-781a6d1995c37ee7a35b045f0ee8372e6c9a0363421aaebd52e45090fccf87283</originalsourceid><addsrcrecordid>eNqVkE1vEzEQhi0EoqHwF9CeEBw2jL93U4RUpaVUigiipZG4jBzvbGW6H2W9AfrvcZS0XLhgHzyy33lfz8PYEYcpBxBvOZQ2By7VawHAQQB_o8RMvBPazGbH5yf55y_LSy7hvZzCdL48Erl6xCYPXY_ZBIrC5lIX-oA9i_E7AJhSmqfsgKdVGg0TdnJa18EH6saMGvLj0MfRjcFnsW9-pqLvsravqMnqfshuh36k0OX14K7bbUvV-5vQXT9nT2rXRHqxPw_Z1w-nl_OP-WJ5dj4_XuRepQFyW3BnKl6W2ktLZJ3Ua1C6BqJCWkHGlw6kkUpw52hdaUFKQwm193VhRSEP2audb_rIjw3FEdsQPTWN66jfRLSgVQFKJuHFTujTPHGgGm-H0LrhDjngFi5uMeEWE97DRSUwbW0QE1zcw0WJgPNlelHJ9eU-frNuqfrruaeZBKud4Fdo6O6_Mv8deX-VnPOdc4gj_X5wdsMNGiutxtWnMxSrb_ZicXWFVv4BTvKiZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70548043</pqid></control><display><type>article</type><title>Efficient electrostatic solvation model for protein-fragment docking</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Majeux, Nicolas ; Scarsi, Marco ; Caflisch, Amedeo</creator><creatorcontrib>Majeux, Nicolas ; Scarsi, Marco ; Caflisch, Amedeo</creatorcontrib><description>A method is presented for the fast evaluation of the binding energy of a protein‐small molecule complex with electrostatic solvation. It makes use of a fast preprocessing step based on the assumption that the main contribution to electrostatic desolvation upon ligand binding originates from the displacement of the first shell of water molecules. For a rigid protein, the precomputation of the energy contributions on a set of grids allows the estimation of the energy in solution of about 300 protein‐fragment binding modes per second on a personal computer. The docking procedure is applied to five rigid binding sites whose size ranges from 17 residues to a whole protein of 107 amino acids. Using a library of 70 mainly rigid molecules, known micromolar inhibitors or close analogs are docked and prioritized correctly. The docking based rank‐ordering of the library requires about 5 h and is proposed as a complementary approach to structure‐activity relationships by nuclear magnetic resonance. Proteins 2001;42:256–268. © 2000 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/1097-0134(20010201)42:2&lt;256::AID-PROT130&gt;3.0.CO;2-4</identifier><identifier>PMID: 11119650</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>binding energy ; Binding Sites ; Caspase 1 - chemistry ; first solvation shell ; FKBP-12 ; ICE ; library docking ; Ligands ; MDM2 ; Mitogen-Activated Protein Kinases - chemistry ; Models, Chemical ; Models, Molecular ; Nuclear Proteins ; p38 MAP kinase ; p38 Mitogen-Activated Protein Kinases ; Peptide Fragments - chemistry ; Protein Binding ; Proto-Oncogene Proteins - chemistry ; Proto-Oncogene Proteins c-mdm2 ; Reproducibility of Results ; Software Validation ; Static Electricity ; Tacrolimus Binding Protein 1A - chemistry ; thrombin ; Thrombin - chemistry</subject><ispartof>Proteins, structure, function, and bioinformatics, 2001-02, Vol.42 (2), p.256-268</ispartof><rights>Copyright © 2000 Wiley‐Liss, Inc.</rights><rights>Copyright 2000 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4010-781a6d1995c37ee7a35b045f0ee8372e6c9a0363421aaebd52e45090fccf87283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0134%2820010201%2942%3A2%3C256%3A%3AAID-PROT130%3E3.0.CO%3B2-4$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0134%2820010201%2942%3A2%3C256%3A%3AAID-PROT130%3E3.0.CO%3B2-4$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11119650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majeux, Nicolas</creatorcontrib><creatorcontrib>Scarsi, Marco</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><title>Efficient electrostatic solvation model for protein-fragment docking</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A method is presented for the fast evaluation of the binding energy of a protein‐small molecule complex with electrostatic solvation. It makes use of a fast preprocessing step based on the assumption that the main contribution to electrostatic desolvation upon ligand binding originates from the displacement of the first shell of water molecules. For a rigid protein, the precomputation of the energy contributions on a set of grids allows the estimation of the energy in solution of about 300 protein‐fragment binding modes per second on a personal computer. The docking procedure is applied to five rigid binding sites whose size ranges from 17 residues to a whole protein of 107 amino acids. Using a library of 70 mainly rigid molecules, known micromolar inhibitors or close analogs are docked and prioritized correctly. The docking based rank‐ordering of the library requires about 5 h and is proposed as a complementary approach to structure‐activity relationships by nuclear magnetic resonance. Proteins 2001;42:256–268. © 2000 Wiley‐Liss, Inc.</description><subject>binding energy</subject><subject>Binding Sites</subject><subject>Caspase 1 - chemistry</subject><subject>first solvation shell</subject><subject>FKBP-12</subject><subject>ICE</subject><subject>library docking</subject><subject>Ligands</subject><subject>MDM2</subject><subject>Mitogen-Activated Protein Kinases - chemistry</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nuclear Proteins</subject><subject>p38 MAP kinase</subject><subject>p38 Mitogen-Activated Protein Kinases</subject><subject>Peptide Fragments - chemistry</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins - chemistry</subject><subject>Proto-Oncogene Proteins c-mdm2</subject><subject>Reproducibility of Results</subject><subject>Software Validation</subject><subject>Static Electricity</subject><subject>Tacrolimus Binding Protein 1A - chemistry</subject><subject>thrombin</subject><subject>Thrombin - chemistry</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkE1vEzEQhi0EoqHwF9CeEBw2jL93U4RUpaVUigiipZG4jBzvbGW6H2W9AfrvcZS0XLhgHzyy33lfz8PYEYcpBxBvOZQ2By7VawHAQQB_o8RMvBPazGbH5yf55y_LSy7hvZzCdL48Erl6xCYPXY_ZBIrC5lIX-oA9i_E7AJhSmqfsgKdVGg0TdnJa18EH6saMGvLj0MfRjcFnsW9-pqLvsravqMnqfshuh36k0OX14K7bbUvV-5vQXT9nT2rXRHqxPw_Z1w-nl_OP-WJ5dj4_XuRepQFyW3BnKl6W2ktLZJ3Ua1C6BqJCWkHGlw6kkUpw52hdaUFKQwm193VhRSEP2audb_rIjw3FEdsQPTWN66jfRLSgVQFKJuHFTujTPHGgGm-H0LrhDjngFi5uMeEWE97DRSUwbW0QE1zcw0WJgPNlelHJ9eU-frNuqfrruaeZBKud4Fdo6O6_Mv8deX-VnPOdc4gj_X5wdsMNGiutxtWnMxSrb_ZicXWFVv4BTvKiZA</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Majeux, Nicolas</creator><creator>Scarsi, Marco</creator><creator>Caflisch, Amedeo</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Efficient electrostatic solvation model for protein-fragment docking</title><author>Majeux, Nicolas ; Scarsi, Marco ; Caflisch, Amedeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4010-781a6d1995c37ee7a35b045f0ee8372e6c9a0363421aaebd52e45090fccf87283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>binding energy</topic><topic>Binding Sites</topic><topic>Caspase 1 - chemistry</topic><topic>first solvation shell</topic><topic>FKBP-12</topic><topic>ICE</topic><topic>library docking</topic><topic>Ligands</topic><topic>MDM2</topic><topic>Mitogen-Activated Protein Kinases - chemistry</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nuclear Proteins</topic><topic>p38 MAP kinase</topic><topic>p38 Mitogen-Activated Protein Kinases</topic><topic>Peptide Fragments - chemistry</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins - chemistry</topic><topic>Proto-Oncogene Proteins c-mdm2</topic><topic>Reproducibility of Results</topic><topic>Software Validation</topic><topic>Static Electricity</topic><topic>Tacrolimus Binding Protein 1A - chemistry</topic><topic>thrombin</topic><topic>Thrombin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majeux, Nicolas</creatorcontrib><creatorcontrib>Scarsi, Marco</creatorcontrib><creatorcontrib>Caflisch, Amedeo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majeux, Nicolas</au><au>Scarsi, Marco</au><au>Caflisch, Amedeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient electrostatic solvation model for protein-fragment docking</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>42</volume><issue>2</issue><spage>256</spage><epage>268</epage><pages>256-268</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A method is presented for the fast evaluation of the binding energy of a protein‐small molecule complex with electrostatic solvation. It makes use of a fast preprocessing step based on the assumption that the main contribution to electrostatic desolvation upon ligand binding originates from the displacement of the first shell of water molecules. For a rigid protein, the precomputation of the energy contributions on a set of grids allows the estimation of the energy in solution of about 300 protein‐fragment binding modes per second on a personal computer. The docking procedure is applied to five rigid binding sites whose size ranges from 17 residues to a whole protein of 107 amino acids. Using a library of 70 mainly rigid molecules, known micromolar inhibitors or close analogs are docked and prioritized correctly. The docking based rank‐ordering of the library requires about 5 h and is proposed as a complementary approach to structure‐activity relationships by nuclear magnetic resonance. Proteins 2001;42:256–268. © 2000 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11119650</pmid><doi>10.1002/1097-0134(20010201)42:2&lt;256::AID-PROT130&gt;3.0.CO;2-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2001-02, Vol.42 (2), p.256-268
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_70548043
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects binding energy
Binding Sites
Caspase 1 - chemistry
first solvation shell
FKBP-12
ICE
library docking
Ligands
MDM2
Mitogen-Activated Protein Kinases - chemistry
Models, Chemical
Models, Molecular
Nuclear Proteins
p38 MAP kinase
p38 Mitogen-Activated Protein Kinases
Peptide Fragments - chemistry
Protein Binding
Proto-Oncogene Proteins - chemistry
Proto-Oncogene Proteins c-mdm2
Reproducibility of Results
Software Validation
Static Electricity
Tacrolimus Binding Protein 1A - chemistry
thrombin
Thrombin - chemistry
title Efficient electrostatic solvation model for protein-fragment docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20electrostatic%20solvation%20model%20for%20protein-fragment%20docking&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Majeux,%20Nicolas&rft.date=2001-02-01&rft.volume=42&rft.issue=2&rft.spage=256&rft.epage=268&rft.pages=256-268&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/1097-0134(20010201)42:2%3C256::AID-PROT130%3E3.0.CO;2-4&rft_dat=%3Cproquest_cross%3E70548043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70548043&rft_id=info:pmid/11119650&rfr_iscdi=true