Thermal Unfolding of a Llama Antibody Fragment:  A Two-State Reversible Process

Camelids produce functional “heavy chain” antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446−448]. It has been shown that the variable domains of these heavy chain antibodies (the VHH fragments) are functional at or after exposure to high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-01, Vol.40 (1), p.74-83
Hauptverfasser: Pérez, Janice M. J, Renisio, Jean G, Prompers, Jeanine J, van Platerink, Chris J, Cambillau, Christian, Darbon, Hervé, Frenken, Leon G. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 74
container_title Biochemistry (Easton)
container_volume 40
creator Pérez, Janice M. J
Renisio, Jean G
Prompers, Jeanine J
van Platerink, Chris J
Cambillau, Christian
Darbon, Hervé
Frenken, Leon G. J
description Camelids produce functional “heavy chain” antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446−448]. It has been shown that the variable domains of these heavy chain antibodies (the VHH fragments) are functional at or after exposure to high temperatures, in contrast to conventional antibodies [Linden van der, R. H. J., et al. (1999) Biochim. Biophys. Acta 1431, 37−44]. For a detailed understanding of the higher thermostability of these VHH fragments, knowledge of their structure and conformational dynamics is required. As a first step toward this goal, we report here the essentially complete 1H and 15N NMR backbone resonance assignments of a llama VHH antibody fragment, and an extensive analysis of the structure at higher temperatures. The H−D exchange NMR data at 300 K indicate that the framework of the llama VHH fragment is highly protected with a ΔG ex of >5.4 kcal/mol, while more flexibility is observed for surface residues, particularly in the loops and the two outer strands (residues 4−7, 10−13, and 58−60) of the β-sheet. The CD data indicate a reversible, two-state unfolding mechanism with a melting transition at 333 K and a ΔH m of 56 kcal/mol. H−D exchange studies using NMR and ESI-MS show that below 313 K exchange occurs through local unfolding events whereas above 333 K exchange mainly occurs through global unfolding. The lack of a stable core at high temperatures, observed for VHH fragments, has also been observed for conventional antibody fragments. The main distinction between the llama VHH fragment and conventional antibody fragments is the reversibility of the thermal unfolding process, explaining its retained functionality after exposure to high temperatures.
doi_str_mv 10.1021/bi0009082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70546497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70546497</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-f444bce68be50c6e167c8aa2294b6a8aa824883e317ee6d7cc3eec7bac7d1ba63</originalsourceid><addsrcrecordid>eNptkLtO5DAUhi0Eglmg4AWQG5AoAnbi2AndCMGCGMQt1NaxcwKBJB7sDLt0tLwmT0LQjKChOrdP_5E-QrY42-cs5gemZozlLIuXyIinMYtEnqfLZDRsZRTnkq2RPyE8DqNgSqySNc654CzNRuS6eEDfQkPvuso1Zd3dU1dRoJMGWqDjrq-NK1_piYf7Frv-8OPtnY5p8c9Ftz30SG_wBX2oTYP0yjuLIWyQlQqagJuLuk7uTo6Lo9Nocvn37Gg8iUDwtI8qIYSxKDODKbMSuVQ2A4jjXBgJQ5fFIssSTLhClKWyNkG0yoBVJTcgk3WyO8-devc8w9Drtg4WmwY6dLOgFUuFFLkawL05aL0LwWOlp75uwb9qzvSXP_3tb2C3F6Ez02L5Qy6EDUA0B-rQ4__vO_gnLVWiUl1c3WpxU7DrNL_Q5wO_M-fBBv3oZr4bnPzy-BMY14XP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70546497</pqid></control><display><type>article</type><title>Thermal Unfolding of a Llama Antibody Fragment:  A Two-State Reversible Process</title><source>ACS Publications</source><source>MEDLINE</source><creator>Pérez, Janice M. J ; Renisio, Jean G ; Prompers, Jeanine J ; van Platerink, Chris J ; Cambillau, Christian ; Darbon, Hervé ; Frenken, Leon G. J</creator><creatorcontrib>Pérez, Janice M. J ; Renisio, Jean G ; Prompers, Jeanine J ; van Platerink, Chris J ; Cambillau, Christian ; Darbon, Hervé ; Frenken, Leon G. J</creatorcontrib><description>Camelids produce functional “heavy chain” antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446−448]. It has been shown that the variable domains of these heavy chain antibodies (the VHH fragments) are functional at or after exposure to high temperatures, in contrast to conventional antibodies [Linden van der, R. H. J., et al. (1999) Biochim. Biophys. Acta 1431, 37−44]. For a detailed understanding of the higher thermostability of these VHH fragments, knowledge of their structure and conformational dynamics is required. As a first step toward this goal, we report here the essentially complete 1H and 15N NMR backbone resonance assignments of a llama VHH antibody fragment, and an extensive analysis of the structure at higher temperatures. The H−D exchange NMR data at 300 K indicate that the framework of the llama VHH fragment is highly protected with a ΔG ex of &gt;5.4 kcal/mol, while more flexibility is observed for surface residues, particularly in the loops and the two outer strands (residues 4−7, 10−13, and 58−60) of the β-sheet. The CD data indicate a reversible, two-state unfolding mechanism with a melting transition at 333 K and a ΔH m of 56 kcal/mol. H−D exchange studies using NMR and ESI-MS show that below 313 K exchange occurs through local unfolding events whereas above 333 K exchange mainly occurs through global unfolding. The lack of a stable core at high temperatures, observed for VHH fragments, has also been observed for conventional antibody fragments. The main distinction between the llama VHH fragment and conventional antibody fragments is the reversibility of the thermal unfolding process, explaining its retained functionality after exposure to high temperatures.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0009082</identifier><identifier>PMID: 11141058</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amides ; Animals ; Camelids, New World - immunology ; Chorionic Gonadotropin - genetics ; Chorionic Gonadotropin - immunology ; Circular Dichroism ; Deuterium ; Hot Temperature ; Humans ; Hydrogen ; Immunoglobulin Heavy Chains - chemistry ; Immunoglobulin Heavy Chains - metabolism ; Immunoglobulin Variable Region - chemistry ; Immunoglobulin Variable Region - metabolism ; Mass Spectrometry ; Nuclear Magnetic Resonance, Biomolecular ; Protein Denaturation ; Protein Folding ; Recombinant Proteins - chemistry ; Recombinant Proteins - immunology ; Recombinant Proteins - metabolism ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 2001-01, Vol.40 (1), p.74-83</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-f444bce68be50c6e167c8aa2294b6a8aa824883e317ee6d7cc3eec7bac7d1ba63</citedby><cites>FETCH-LOGICAL-a415t-f444bce68be50c6e167c8aa2294b6a8aa824883e317ee6d7cc3eec7bac7d1ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0009082$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0009082$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11141058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez, Janice M. J</creatorcontrib><creatorcontrib>Renisio, Jean G</creatorcontrib><creatorcontrib>Prompers, Jeanine J</creatorcontrib><creatorcontrib>van Platerink, Chris J</creatorcontrib><creatorcontrib>Cambillau, Christian</creatorcontrib><creatorcontrib>Darbon, Hervé</creatorcontrib><creatorcontrib>Frenken, Leon G. J</creatorcontrib><title>Thermal Unfolding of a Llama Antibody Fragment:  A Two-State Reversible Process</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Camelids produce functional “heavy chain” antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446−448]. It has been shown that the variable domains of these heavy chain antibodies (the VHH fragments) are functional at or after exposure to high temperatures, in contrast to conventional antibodies [Linden van der, R. H. J., et al. (1999) Biochim. Biophys. Acta 1431, 37−44]. For a detailed understanding of the higher thermostability of these VHH fragments, knowledge of their structure and conformational dynamics is required. As a first step toward this goal, we report here the essentially complete 1H and 15N NMR backbone resonance assignments of a llama VHH antibody fragment, and an extensive analysis of the structure at higher temperatures. The H−D exchange NMR data at 300 K indicate that the framework of the llama VHH fragment is highly protected with a ΔG ex of &gt;5.4 kcal/mol, while more flexibility is observed for surface residues, particularly in the loops and the two outer strands (residues 4−7, 10−13, and 58−60) of the β-sheet. The CD data indicate a reversible, two-state unfolding mechanism with a melting transition at 333 K and a ΔH m of 56 kcal/mol. H−D exchange studies using NMR and ESI-MS show that below 313 K exchange occurs through local unfolding events whereas above 333 K exchange mainly occurs through global unfolding. The lack of a stable core at high temperatures, observed for VHH fragments, has also been observed for conventional antibody fragments. The main distinction between the llama VHH fragment and conventional antibody fragments is the reversibility of the thermal unfolding process, explaining its retained functionality after exposure to high temperatures.</description><subject>Amides</subject><subject>Animals</subject><subject>Camelids, New World - immunology</subject><subject>Chorionic Gonadotropin - genetics</subject><subject>Chorionic Gonadotropin - immunology</subject><subject>Circular Dichroism</subject><subject>Deuterium</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Immunoglobulin Heavy Chains - chemistry</subject><subject>Immunoglobulin Heavy Chains - metabolism</subject><subject>Immunoglobulin Variable Region - chemistry</subject><subject>Immunoglobulin Variable Region - metabolism</subject><subject>Mass Spectrometry</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - immunology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLtO5DAUhi0Eglmg4AWQG5AoAnbi2AndCMGCGMQt1NaxcwKBJB7sDLt0tLwmT0LQjKChOrdP_5E-QrY42-cs5gemZozlLIuXyIinMYtEnqfLZDRsZRTnkq2RPyE8DqNgSqySNc654CzNRuS6eEDfQkPvuso1Zd3dU1dRoJMGWqDjrq-NK1_piYf7Frv-8OPtnY5p8c9Ftz30SG_wBX2oTYP0yjuLIWyQlQqagJuLuk7uTo6Lo9Nocvn37Gg8iUDwtI8qIYSxKDODKbMSuVQ2A4jjXBgJQ5fFIssSTLhClKWyNkG0yoBVJTcgk3WyO8-devc8w9Drtg4WmwY6dLOgFUuFFLkawL05aL0LwWOlp75uwb9qzvSXP_3tb2C3F6Ez02L5Qy6EDUA0B-rQ4__vO_gnLVWiUl1c3WpxU7DrNL_Q5wO_M-fBBv3oZr4bnPzy-BMY14XP</recordid><startdate>20010109</startdate><enddate>20010109</enddate><creator>Pérez, Janice M. J</creator><creator>Renisio, Jean G</creator><creator>Prompers, Jeanine J</creator><creator>van Platerink, Chris J</creator><creator>Cambillau, Christian</creator><creator>Darbon, Hervé</creator><creator>Frenken, Leon G. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010109</creationdate><title>Thermal Unfolding of a Llama Antibody Fragment:  A Two-State Reversible Process</title><author>Pérez, Janice M. J ; Renisio, Jean G ; Prompers, Jeanine J ; van Platerink, Chris J ; Cambillau, Christian ; Darbon, Hervé ; Frenken, Leon G. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-f444bce68be50c6e167c8aa2294b6a8aa824883e317ee6d7cc3eec7bac7d1ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amides</topic><topic>Animals</topic><topic>Camelids, New World - immunology</topic><topic>Chorionic Gonadotropin - genetics</topic><topic>Chorionic Gonadotropin - immunology</topic><topic>Circular Dichroism</topic><topic>Deuterium</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Immunoglobulin Heavy Chains - chemistry</topic><topic>Immunoglobulin Heavy Chains - metabolism</topic><topic>Immunoglobulin Variable Region - chemistry</topic><topic>Immunoglobulin Variable Region - metabolism</topic><topic>Mass Spectrometry</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - immunology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez, Janice M. J</creatorcontrib><creatorcontrib>Renisio, Jean G</creatorcontrib><creatorcontrib>Prompers, Jeanine J</creatorcontrib><creatorcontrib>van Platerink, Chris J</creatorcontrib><creatorcontrib>Cambillau, Christian</creatorcontrib><creatorcontrib>Darbon, Hervé</creatorcontrib><creatorcontrib>Frenken, Leon G. J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez, Janice M. J</au><au>Renisio, Jean G</au><au>Prompers, Jeanine J</au><au>van Platerink, Chris J</au><au>Cambillau, Christian</au><au>Darbon, Hervé</au><au>Frenken, Leon G. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Unfolding of a Llama Antibody Fragment:  A Two-State Reversible Process</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2001-01-09</date><risdate>2001</risdate><volume>40</volume><issue>1</issue><spage>74</spage><epage>83</epage><pages>74-83</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Camelids produce functional “heavy chain” antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446−448]. It has been shown that the variable domains of these heavy chain antibodies (the VHH fragments) are functional at or after exposure to high temperatures, in contrast to conventional antibodies [Linden van der, R. H. J., et al. (1999) Biochim. Biophys. Acta 1431, 37−44]. For a detailed understanding of the higher thermostability of these VHH fragments, knowledge of their structure and conformational dynamics is required. As a first step toward this goal, we report here the essentially complete 1H and 15N NMR backbone resonance assignments of a llama VHH antibody fragment, and an extensive analysis of the structure at higher temperatures. The H−D exchange NMR data at 300 K indicate that the framework of the llama VHH fragment is highly protected with a ΔG ex of &gt;5.4 kcal/mol, while more flexibility is observed for surface residues, particularly in the loops and the two outer strands (residues 4−7, 10−13, and 58−60) of the β-sheet. The CD data indicate a reversible, two-state unfolding mechanism with a melting transition at 333 K and a ΔH m of 56 kcal/mol. H−D exchange studies using NMR and ESI-MS show that below 313 K exchange occurs through local unfolding events whereas above 333 K exchange mainly occurs through global unfolding. The lack of a stable core at high temperatures, observed for VHH fragments, has also been observed for conventional antibody fragments. The main distinction between the llama VHH fragment and conventional antibody fragments is the reversibility of the thermal unfolding process, explaining its retained functionality after exposure to high temperatures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11141058</pmid><doi>10.1021/bi0009082</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2001-01, Vol.40 (1), p.74-83
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_70546497
source ACS Publications; MEDLINE
subjects Amides
Animals
Camelids, New World - immunology
Chorionic Gonadotropin - genetics
Chorionic Gonadotropin - immunology
Circular Dichroism
Deuterium
Hot Temperature
Humans
Hydrogen
Immunoglobulin Heavy Chains - chemistry
Immunoglobulin Heavy Chains - metabolism
Immunoglobulin Variable Region - chemistry
Immunoglobulin Variable Region - metabolism
Mass Spectrometry
Nuclear Magnetic Resonance, Biomolecular
Protein Denaturation
Protein Folding
Recombinant Proteins - chemistry
Recombinant Proteins - immunology
Recombinant Proteins - metabolism
Thermodynamics
title Thermal Unfolding of a Llama Antibody Fragment:  A Two-State Reversible Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Unfolding%20of%20a%20Llama%20Antibody%20Fragment:%E2%80%89%20A%20Two-State%20Reversible%20Process&rft.jtitle=Biochemistry%20(Easton)&rft.au=P%C3%A9rez,%20Janice%20M.%20J&rft.date=2001-01-09&rft.volume=40&rft.issue=1&rft.spage=74&rft.epage=83&rft.pages=74-83&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0009082&rft_dat=%3Cproquest_cross%3E70546497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70546497&rft_id=info:pmid/11141058&rfr_iscdi=true