Rotational Diffusion of Organic Solutes in Surfactant−Block Copolymer Micelles:  Role of Electrostatic Interactions and Micellar Hydration

Rotational diffusion of a cationic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole, DMDPP has been examined in the surfactant−block copolymer system of sodium dodecyl sulfate (SDS) and poly(ethylene oxide)20−poly(propylene oxide)70−poly(ethylene oxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2007-05, Vol.111 (21), p.5878-5884
Hauptverfasser: Mali, K. S, Dutt, G. B, Mukherjee, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5884
container_issue 21
container_start_page 5878
container_title The journal of physical chemistry. B
container_volume 111
creator Mali, K. S
Dutt, G. B
Mukherjee, T
description Rotational diffusion of a cationic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole, DMDPP has been examined in the surfactant−block copolymer system of sodium dodecyl sulfate (SDS) and poly(ethylene oxide)20−poly(propylene oxide)70−poly(ethylene oxide)20 (P123). In this study, the mole ratio of SDS to P123 was varied from 0 to 5 in steps of one unit, to investigate the role of electrostatic interactions and micellar hydration on solute rotation. It has been noticed that there is a significant enhancement in the average reorientation time of rhodamine 110, when [SDS]/[P123] increased from 0 to 1. This has been rationalized on the basis of migration of rhodamine 110 from the interfacial region of P123 micelles to the palisade layer (corona region) due to the electrostatic interaction with negatively charged head groups of SDS, whose tails are embedded in the polypropylene oxide core. Further increase in the mole ratio of SDS to P123 has resulted in only a marginal decrease in the average reorientation time of rhodamine 110, which is probably due to the solute molecule experiencing a microenvironment similar to the interfacial region of SDS micelles. In contrast, a gradual decrease has been observed in the average reorientation time of DMDPP with [SDS]/[P123], which is due to the increase in hydration levels in the palisade layer (corona region) of the micelle. These explanations are consistent with the structure of the SDS−P123 micellar system that has been deduced from neutron scattering and viscosity measurements recently.
doi_str_mv 10.1021/jp068490q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70538746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70538746</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-86bf498e1b41fc746d8c6d792842861df736877203c5f275acf23a0bc0f0dbe73</originalsourceid><addsrcrecordid>eNptkb1OHDEUhS0UBIRQ5AWQmyBRDNieGdtLxy7_IeJnl7SWx2OjWbzjxfZI2S5l0qTII_Ik8bIjaFJYvtL9fM69xwB8xugAI4IPp3NEeTFAz2tgC5cEZemwD31NMaKb4GMIU4RISTjdAJuYFXxASbkF_ty7KGPjWmnhSWNMF1INnYE3_lG2jYJjZ7uoA2xaOO68kSrKNr78-ju0Tj3BkZs7u5hpD781Slurw9HLz9_w3lm9FDm1WkXvwtJCwcs2ap8EkkOAsq37N9LDi0XtX6f4BNaNtEHv9Pc2eDg7nYwusuub88vR8XUm8xLHjNPKFAOucVVgo1hBa65ozQaEF2lBXBuWU84YQbkqDWGlVIbkElUKGVRXmuXbYG-lO_fuudMhilkTXodpteuCYKjMedJN4P4KVGmN4LURc9_MpF8IjMQyfPEWfmJ3e9Gumun6nezTTkC2ApoQ9Y-3vvRPgrKclWJyOxbn388mX4f5lbhL_JcVL1UQU9f59EvhP8b_AOPLnvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70538746</pqid></control><display><type>article</type><title>Rotational Diffusion of Organic Solutes in Surfactant−Block Copolymer Micelles:  Role of Electrostatic Interactions and Micellar Hydration</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mali, K. S ; Dutt, G. B ; Mukherjee, T</creator><creatorcontrib>Mali, K. S ; Dutt, G. B ; Mukherjee, T</creatorcontrib><description>Rotational diffusion of a cationic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole, DMDPP has been examined in the surfactant−block copolymer system of sodium dodecyl sulfate (SDS) and poly(ethylene oxide)20−poly(propylene oxide)70−poly(ethylene oxide)20 (P123). In this study, the mole ratio of SDS to P123 was varied from 0 to 5 in steps of one unit, to investigate the role of electrostatic interactions and micellar hydration on solute rotation. It has been noticed that there is a significant enhancement in the average reorientation time of rhodamine 110, when [SDS]/[P123] increased from 0 to 1. This has been rationalized on the basis of migration of rhodamine 110 from the interfacial region of P123 micelles to the palisade layer (corona region) due to the electrostatic interaction with negatively charged head groups of SDS, whose tails are embedded in the polypropylene oxide core. Further increase in the mole ratio of SDS to P123 has resulted in only a marginal decrease in the average reorientation time of rhodamine 110, which is probably due to the solute molecule experiencing a microenvironment similar to the interfacial region of SDS micelles. In contrast, a gradual decrease has been observed in the average reorientation time of DMDPP with [SDS]/[P123], which is due to the increase in hydration levels in the palisade layer (corona region) of the micelle. These explanations are consistent with the structure of the SDS−P123 micellar system that has been deduced from neutron scattering and viscosity measurements recently.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp068490q</identifier><identifier>PMID: 17489625</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Diffusion ; Micelles ; Molecular Structure ; Polyethylene Glycols - chemistry ; Propylene Glycols - chemistry ; Pyrroles - chemistry ; Rhodamines - chemistry ; Rotation ; Static Electricity ; Surface-Active Agents - chemistry ; Time Factors</subject><ispartof>The journal of physical chemistry. B, 2007-05, Vol.111 (21), p.5878-5884</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-86bf498e1b41fc746d8c6d792842861df736877203c5f275acf23a0bc0f0dbe73</citedby><cites>FETCH-LOGICAL-a351t-86bf498e1b41fc746d8c6d792842861df736877203c5f275acf23a0bc0f0dbe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp068490q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp068490q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17489625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mali, K. S</creatorcontrib><creatorcontrib>Dutt, G. B</creatorcontrib><creatorcontrib>Mukherjee, T</creatorcontrib><title>Rotational Diffusion of Organic Solutes in Surfactant−Block Copolymer Micelles:  Role of Electrostatic Interactions and Micellar Hydration</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Rotational diffusion of a cationic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole, DMDPP has been examined in the surfactant−block copolymer system of sodium dodecyl sulfate (SDS) and poly(ethylene oxide)20−poly(propylene oxide)70−poly(ethylene oxide)20 (P123). In this study, the mole ratio of SDS to P123 was varied from 0 to 5 in steps of one unit, to investigate the role of electrostatic interactions and micellar hydration on solute rotation. It has been noticed that there is a significant enhancement in the average reorientation time of rhodamine 110, when [SDS]/[P123] increased from 0 to 1. This has been rationalized on the basis of migration of rhodamine 110 from the interfacial region of P123 micelles to the palisade layer (corona region) due to the electrostatic interaction with negatively charged head groups of SDS, whose tails are embedded in the polypropylene oxide core. Further increase in the mole ratio of SDS to P123 has resulted in only a marginal decrease in the average reorientation time of rhodamine 110, which is probably due to the solute molecule experiencing a microenvironment similar to the interfacial region of SDS micelles. In contrast, a gradual decrease has been observed in the average reorientation time of DMDPP with [SDS]/[P123], which is due to the increase in hydration levels in the palisade layer (corona region) of the micelle. These explanations are consistent with the structure of the SDS−P123 micellar system that has been deduced from neutron scattering and viscosity measurements recently.</description><subject>Diffusion</subject><subject>Micelles</subject><subject>Molecular Structure</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Propylene Glycols - chemistry</subject><subject>Pyrroles - chemistry</subject><subject>Rhodamines - chemistry</subject><subject>Rotation</subject><subject>Static Electricity</subject><subject>Surface-Active Agents - chemistry</subject><subject>Time Factors</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkb1OHDEUhS0UBIRQ5AWQmyBRDNieGdtLxy7_IeJnl7SWx2OjWbzjxfZI2S5l0qTII_Ik8bIjaFJYvtL9fM69xwB8xugAI4IPp3NEeTFAz2tgC5cEZemwD31NMaKb4GMIU4RISTjdAJuYFXxASbkF_ty7KGPjWmnhSWNMF1INnYE3_lG2jYJjZ7uoA2xaOO68kSrKNr78-ju0Tj3BkZs7u5hpD781Slurw9HLz9_w3lm9FDm1WkXvwtJCwcs2ap8EkkOAsq37N9LDi0XtX6f4BNaNtEHv9Pc2eDg7nYwusuub88vR8XUm8xLHjNPKFAOucVVgo1hBa65ozQaEF2lBXBuWU84YQbkqDWGlVIbkElUKGVRXmuXbYG-lO_fuudMhilkTXodpteuCYKjMedJN4P4KVGmN4LURc9_MpF8IjMQyfPEWfmJ3e9Gumun6nezTTkC2ApoQ9Y-3vvRPgrKclWJyOxbn388mX4f5lbhL_JcVL1UQU9f59EvhP8b_AOPLnvc</recordid><startdate>20070531</startdate><enddate>20070531</enddate><creator>Mali, K. S</creator><creator>Dutt, G. B</creator><creator>Mukherjee, T</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070531</creationdate><title>Rotational Diffusion of Organic Solutes in Surfactant−Block Copolymer Micelles:  Role of Electrostatic Interactions and Micellar Hydration</title><author>Mali, K. S ; Dutt, G. B ; Mukherjee, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-86bf498e1b41fc746d8c6d792842861df736877203c5f275acf23a0bc0f0dbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Diffusion</topic><topic>Micelles</topic><topic>Molecular Structure</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Propylene Glycols - chemistry</topic><topic>Pyrroles - chemistry</topic><topic>Rhodamines - chemistry</topic><topic>Rotation</topic><topic>Static Electricity</topic><topic>Surface-Active Agents - chemistry</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mali, K. S</creatorcontrib><creatorcontrib>Dutt, G. B</creatorcontrib><creatorcontrib>Mukherjee, T</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mali, K. S</au><au>Dutt, G. B</au><au>Mukherjee, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational Diffusion of Organic Solutes in Surfactant−Block Copolymer Micelles:  Role of Electrostatic Interactions and Micellar Hydration</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2007-05-31</date><risdate>2007</risdate><volume>111</volume><issue>21</issue><spage>5878</spage><epage>5884</epage><pages>5878-5884</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Rotational diffusion of a cationic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole, DMDPP has been examined in the surfactant−block copolymer system of sodium dodecyl sulfate (SDS) and poly(ethylene oxide)20−poly(propylene oxide)70−poly(ethylene oxide)20 (P123). In this study, the mole ratio of SDS to P123 was varied from 0 to 5 in steps of one unit, to investigate the role of electrostatic interactions and micellar hydration on solute rotation. It has been noticed that there is a significant enhancement in the average reorientation time of rhodamine 110, when [SDS]/[P123] increased from 0 to 1. This has been rationalized on the basis of migration of rhodamine 110 from the interfacial region of P123 micelles to the palisade layer (corona region) due to the electrostatic interaction with negatively charged head groups of SDS, whose tails are embedded in the polypropylene oxide core. Further increase in the mole ratio of SDS to P123 has resulted in only a marginal decrease in the average reorientation time of rhodamine 110, which is probably due to the solute molecule experiencing a microenvironment similar to the interfacial region of SDS micelles. In contrast, a gradual decrease has been observed in the average reorientation time of DMDPP with [SDS]/[P123], which is due to the increase in hydration levels in the palisade layer (corona region) of the micelle. These explanations are consistent with the structure of the SDS−P123 micellar system that has been deduced from neutron scattering and viscosity measurements recently.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17489625</pmid><doi>10.1021/jp068490q</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2007-05, Vol.111 (21), p.5878-5884
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70538746
source MEDLINE; ACS Publications
subjects Diffusion
Micelles
Molecular Structure
Polyethylene Glycols - chemistry
Propylene Glycols - chemistry
Pyrroles - chemistry
Rhodamines - chemistry
Rotation
Static Electricity
Surface-Active Agents - chemistry
Time Factors
title Rotational Diffusion of Organic Solutes in Surfactant−Block Copolymer Micelles:  Role of Electrostatic Interactions and Micellar Hydration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20Diffusion%20of%20Organic%20Solutes%20in%20Surfactant%E2%88%92Block%20Copolymer%20Micelles:%E2%80%89%20Role%20of%20Electrostatic%20Interactions%20and%20Micellar%20Hydration&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Mali,%20K.%20S&rft.date=2007-05-31&rft.volume=111&rft.issue=21&rft.spage=5878&rft.epage=5884&rft.pages=5878-5884&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp068490q&rft_dat=%3Cproquest_cross%3E70538746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70538746&rft_id=info:pmid/17489625&rfr_iscdi=true