Substituent Effect on g-Tensor:  Multifrequency ESR Study and DFT Calculation of Polycrystalline Phenoxyl Radicals in Diamagnetic Crystals

The substituent effect on the g-tensor of polycrystalline 2,6-di-tert-butyl phenoxyl radical derivatives diluted in diamagnetic crystals was investigated using multifrequency ESR spectroscopy and DFT calculations. It was revealed that the g-tensors of the series of phenoxyl radical derivatives essen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2007-05, Vol.111 (21), p.4612-4619
Hauptverfasser: Yamaji, Toshiki, Saiful, Baba, Masaaki, Yamauchi, Seigo, Yamauchi, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The substituent effect on the g-tensor of polycrystalline 2,6-di-tert-butyl phenoxyl radical derivatives diluted in diamagnetic crystals was investigated using multifrequency ESR spectroscopy and DFT calculations. It was revealed that the g-tensors of the series of phenoxyl radical derivatives essentially have an orthorhombic symmetry. For some radicals, the hyperfine-splitting tensors from the para groups were resolved. The interpretations and the assignments of the spin-Hamiltonian parameters were confirmed with computer simulations in all bands. The DFT-calculated g-tensors were consistent with the experimental g-tensors. Furthermore, the shifts Δg from the free electron g e were analyzed in details as the sum of three contributions. The spin−orbit interactions were found to be the dominant factor with regard to the Δg. With a focus on the s−o term, thus, the relationship of the g-values and the electronic excited states was explained by visualizing the molecular orbitals of the phenoxyl radical derivatives. This study thus showed the very significant potential of the combination of a multi-frequency ESR approach and a DFT calculation to advanced ESR analysis, particularly, g-tensor analysis, even for a powder-sample radical.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp071263j