Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition

Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2007-05, Vol.100 (10), p.1503-1511
Hauptverfasser: Butcher, Jonathan T, McQuinn, Tim C, Sedmera, David, Turner, Debi, Markwald, Roger R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1511
container_issue 10
container_start_page 1503
container_title Circulation research
container_volume 100
creator Butcher, Jonathan T
McQuinn, Tim C
Sedmera, David
Turner, Debi
Markwald, Roger R
description Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.
doi_str_mv 10.1161/CIRCRESAHA.107.148684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70523394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70523394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4734-48d4dddd69885c88d8beccc0597b140e368feec060a1ea3d4589881e30c135f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhEUC-wG0Xe-3EzjFEW1qpEqhEcIwcZ0IMjr3YSat9Fx623malPdaXsUbf_8-MfoTeU7KhNKefq5u76m73o7wuN5SIDeUyl_wFWtFsy9c8E_QlWhFCirVgjFygNzH-IYRyti1eowsquJBiK1fofx2Ui2Yy3kVsHN6pYA94N7bh4J3RuJyC8ffgUtGzVQH_VPb-6XM1O32U4cqHAHHvXYd_mWnA1aDcb3hyq-Y4HJEvxo-gU9_oiOtBTbgMgL8H6IyeVGsBtwdcmxhnSHbj3i8bvUWvemUjvDvVS1Rf7erqen377etNVd6uNRcsXSs73qWXF1JmWspOtqC1JlkhWsoJsFz2AJrkRFFQrOOZTCQFRjRlWc8u0afFdh_8vxni1IwmarBWOfBzbATJtowVPIHZAurgYwzQN_tgRhUODSXNMZXmnEpqiWZJJek-nAbM7QjdWXWKIQEfT4CKWtk-ZaJNPHNSEpYRkrhi4R68nSDEv3Z-gNAMoOw0PLPEI6P2rBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70523394</pqid></control><display><type>article</type><title>Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><creator>Butcher, Jonathan T ; McQuinn, Tim C ; Sedmera, David ; Turner, Debi ; Markwald, Roger R</creator><creatorcontrib>Butcher, Jonathan T ; McQuinn, Tim C ; Sedmera, David ; Turner, Debi ; Markwald, Roger R</creatorcontrib><description>Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.107.148684</identifier><identifier>PMID: 17478728</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Blood Flow Velocity ; Chick Embryo ; Collagen - analysis ; Coronary Circulation ; Echocardiography ; Fundamental and applied biological sciences. Psychology ; Glycosaminoglycans - analysis ; Glycosaminoglycans - physiology ; Heart Conduction System - physiology ; Heart Valves - chemistry ; Heart Valves - embryology ; Heart Valves - physiology ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2007-05, Vol.100 (10), p.1503-1511</ispartof><rights>2007 American Heart Association, Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4734-48d4dddd69885c88d8beccc0597b140e368feec060a1ea3d4589881e30c135f3</citedby><cites>FETCH-LOGICAL-c4734-48d4dddd69885c88d8beccc0597b140e368feec060a1ea3d4589881e30c135f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3673,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18803500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17478728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Butcher, Jonathan T</creatorcontrib><creatorcontrib>McQuinn, Tim C</creatorcontrib><creatorcontrib>Sedmera, David</creatorcontrib><creatorcontrib>Turner, Debi</creatorcontrib><creatorcontrib>Markwald, Roger R</creatorcontrib><title>Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Blood Flow Velocity</subject><subject>Chick Embryo</subject><subject>Collagen - analysis</subject><subject>Coronary Circulation</subject><subject>Echocardiography</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycosaminoglycans - analysis</subject><subject>Glycosaminoglycans - physiology</subject><subject>Heart Conduction System - physiology</subject><subject>Heart Valves - chemistry</subject><subject>Heart Valves - embryology</subject><subject>Heart Valves - physiology</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EokvhEUC-wG0Xe-3EzjFEW1qpEqhEcIwcZ0IMjr3YSat9Fx623malPdaXsUbf_8-MfoTeU7KhNKefq5u76m73o7wuN5SIDeUyl_wFWtFsy9c8E_QlWhFCirVgjFygNzH-IYRyti1eowsquJBiK1fofx2Ui2Yy3kVsHN6pYA94N7bh4J3RuJyC8ffgUtGzVQH_VPb-6XM1O32U4cqHAHHvXYd_mWnA1aDcb3hyq-Y4HJEvxo-gU9_oiOtBTbgMgL8H6IyeVGsBtwdcmxhnSHbj3i8bvUWvemUjvDvVS1Rf7erqen377etNVd6uNRcsXSs73qWXF1JmWspOtqC1JlkhWsoJsFz2AJrkRFFQrOOZTCQFRjRlWc8u0afFdh_8vxni1IwmarBWOfBzbATJtowVPIHZAurgYwzQN_tgRhUODSXNMZXmnEpqiWZJJek-nAbM7QjdWXWKIQEfT4CKWtk-ZaJNPHNSEpYRkrhi4R68nSDEv3Z-gNAMoOw0PLPEI6P2rBI</recordid><startdate>20070525</startdate><enddate>20070525</enddate><creator>Butcher, Jonathan T</creator><creator>McQuinn, Tim C</creator><creator>Sedmera, David</creator><creator>Turner, Debi</creator><creator>Markwald, Roger R</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070525</creationdate><title>Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition</title><author>Butcher, Jonathan T ; McQuinn, Tim C ; Sedmera, David ; Turner, Debi ; Markwald, Roger R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4734-48d4dddd69885c88d8beccc0597b140e368feec060a1ea3d4589881e30c135f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Blood Flow Velocity</topic><topic>Chick Embryo</topic><topic>Collagen - analysis</topic><topic>Coronary Circulation</topic><topic>Echocardiography</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycosaminoglycans - analysis</topic><topic>Glycosaminoglycans - physiology</topic><topic>Heart Conduction System - physiology</topic><topic>Heart Valves - chemistry</topic><topic>Heart Valves - embryology</topic><topic>Heart Valves - physiology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butcher, Jonathan T</creatorcontrib><creatorcontrib>McQuinn, Tim C</creatorcontrib><creatorcontrib>Sedmera, David</creatorcontrib><creatorcontrib>Turner, Debi</creatorcontrib><creatorcontrib>Markwald, Roger R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butcher, Jonathan T</au><au>McQuinn, Tim C</au><au>Sedmera, David</au><au>Turner, Debi</au><au>Markwald, Roger R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2007-05-25</date><risdate>2007</risdate><volume>100</volume><issue>10</issue><spage>1503</spage><epage>1511</epage><pages>1503-1511</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>17478728</pmid><doi>10.1161/CIRCRESAHA.107.148684</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2007-05, Vol.100 (10), p.1503-1511
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_70523394
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload
subjects Animals
Biological and medical sciences
Biomechanical Phenomena
Blood Flow Velocity
Chick Embryo
Collagen - analysis
Coronary Circulation
Echocardiography
Fundamental and applied biological sciences. Psychology
Glycosaminoglycans - analysis
Glycosaminoglycans - physiology
Heart Conduction System - physiology
Heart Valves - chemistry
Heart Valves - embryology
Heart Valves - physiology
Vertebrates: cardiovascular system
title Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitions%20in%20Early%20Embryonic%20Atrioventricular%20Valvular%20Function%20Correspond%20With%20Changes%20in%20Cushion%20Biomechanics%20That%20Are%20Predictable%20by%20Tissue%20Composition&rft.jtitle=Circulation%20research&rft.au=Butcher,%20Jonathan%20T&rft.date=2007-05-25&rft.volume=100&rft.issue=10&rft.spage=1503&rft.epage=1511&rft.pages=1503-1511&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.107.148684&rft_dat=%3Cproquest_cross%3E70523394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70523394&rft_id=info:pmid/17478728&rfr_iscdi=true