Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov Chains and additive regression models

Rationale, aims and objectives  Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause‐specific mortality using Cox and Aalen model; (ii) to describe how the predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evaluation in clinical practice 2007-06, Vol.13 (3), p.422-428
Hauptverfasser: Rosato, Rosalba, Ciccone, G., Bo, S., Pagano, G. F., Merletti, F., Gregori, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 3
container_start_page 422
container_title Journal of evaluation in clinical practice
container_volume 13
creator Rosato, Rosalba
Ciccone, G.
Bo, S.
Pagano, G. F.
Merletti, F.
Gregori, D.
description Rationale, aims and objectives  Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause‐specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results. Methods  Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause‐specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity. Results  For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow‐up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21–0.31] and 0.14 (95% CI = 0.09–0.18). Conclusions  Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co‐morbidities. The Aalen model, in addition, is shown to be better at identifying cause‐specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.
doi_str_mv 10.1111/j.1365-2753.2006.00732.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70517932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70517932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4042-87d5554ee662507c2d94084672ae3163ff31f6fa219ae1f29a851ad0eed6fda63</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqXwF5BX7BL8iO0EsaGjoYDKSwJ1ad2Jb4qnedU3M8z8DX4xycyobLEs2ZLPd651TpIwwTMxrdfrTCijU2m1yiTnJuPcKpntHiXnDw-P57s2qZBlfpY8I1pzLhTX9mlyJqwWRcHL8-TPcgvNBsbQ3bIKog_9FqjaNBBZ28cRmjDuWejYuB-QSeYDrHBEYsOEYDfSGwbdtKHZUyC2AkLP-o5VfTvgwTQGuiP2GeJdv2WLXxA6mvSegfdhDFtkEW8jEoWJanuPDT1PntTQEL44nRfJz_fLH4sP6fXXq4-Ld9dplfNcpoX1Wusc0Ripua2kL3Ne5MZKQCWMqmslalODFCWgqGUJhRbgOaI3tQejLpJXR98h9vcbpNG1gSpsGuiw35CzXAtbKjkJi6Owij1RxNoNMbQQ905wN_fh1m6O3c2xu7kPd-jD7Sb05WnGZtWi_weeCpgEb4-C36HB_X8bu0_Lb_bwtfSIBxpx94BPaTtjldXu5suV4_nl95vLQrlS_QUbN6r7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70517932</pqid></control><display><type>article</type><title>Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov Chains and additive regression models</title><source>MEDLINE</source><source>Wiley Blackwell Single Titles</source><creator>Rosato, Rosalba ; Ciccone, G. ; Bo, S. ; Pagano, G. F. ; Merletti, F. ; Gregori, D.</creator><creatorcontrib>Rosato, Rosalba ; Ciccone, G. ; Bo, S. ; Pagano, G. F. ; Merletti, F. ; Gregori, D.</creatorcontrib><description>Rationale, aims and objectives  Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause‐specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results. Methods  Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause‐specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity. Results  For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow‐up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21–0.31] and 0.14 (95% CI = 0.09–0.18). Conclusions  Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co‐morbidities. The Aalen model, in addition, is shown to be better at identifying cause‐specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.</description><identifier>ISSN: 1356-1294</identifier><identifier>EISSN: 1365-2753</identifier><identifier>DOI: 10.1111/j.1365-2753.2006.00732.x</identifier><identifier>PMID: 17518809</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aalen model ; Cardiovascular Diseases - mortality ; cause-specific hazard ; Cohort Studies ; competing risks model ; Cox model ; diabetes ; Diabetes Mellitus, Type 2 ; Female ; Humans ; Italy - epidemiology ; Male ; Markov Chains ; Middle Aged ; mortality ; Proportional Hazards Models ; Regression Analysis ; Risk Assessment</subject><ispartof>Journal of evaluation in clinical practice, 2007-06, Vol.13 (3), p.422-428</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4042-87d5554ee662507c2d94084672ae3163ff31f6fa219ae1f29a851ad0eed6fda63</citedby><cites>FETCH-LOGICAL-c4042-87d5554ee662507c2d94084672ae3163ff31f6fa219ae1f29a851ad0eed6fda63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2753.2006.00732.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2753.2006.00732.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17518809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosato, Rosalba</creatorcontrib><creatorcontrib>Ciccone, G.</creatorcontrib><creatorcontrib>Bo, S.</creatorcontrib><creatorcontrib>Pagano, G. F.</creatorcontrib><creatorcontrib>Merletti, F.</creatorcontrib><creatorcontrib>Gregori, D.</creatorcontrib><title>Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov Chains and additive regression models</title><title>Journal of evaluation in clinical practice</title><addtitle>J Eval Clin Pract</addtitle><description>Rationale, aims and objectives  Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause‐specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results. Methods  Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause‐specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity. Results  For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow‐up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21–0.31] and 0.14 (95% CI = 0.09–0.18). Conclusions  Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co‐morbidities. The Aalen model, in addition, is shown to be better at identifying cause‐specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.</description><subject>Aalen model</subject><subject>Cardiovascular Diseases - mortality</subject><subject>cause-specific hazard</subject><subject>Cohort Studies</subject><subject>competing risks model</subject><subject>Cox model</subject><subject>diabetes</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Female</subject><subject>Humans</subject><subject>Italy - epidemiology</subject><subject>Male</subject><subject>Markov Chains</subject><subject>Middle Aged</subject><subject>mortality</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Risk Assessment</subject><issn>1356-1294</issn><issn>1365-2753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhSMEoqXwF5BX7BL8iO0EsaGjoYDKSwJ1ad2Jb4qnedU3M8z8DX4xycyobLEs2ZLPd651TpIwwTMxrdfrTCijU2m1yiTnJuPcKpntHiXnDw-P57s2qZBlfpY8I1pzLhTX9mlyJqwWRcHL8-TPcgvNBsbQ3bIKog_9FqjaNBBZ28cRmjDuWejYuB-QSeYDrHBEYsOEYDfSGwbdtKHZUyC2AkLP-o5VfTvgwTQGuiP2GeJdv2WLXxA6mvSegfdhDFtkEW8jEoWJanuPDT1PntTQEL44nRfJz_fLH4sP6fXXq4-Ld9dplfNcpoX1Wusc0Ripua2kL3Ne5MZKQCWMqmslalODFCWgqGUJhRbgOaI3tQejLpJXR98h9vcbpNG1gSpsGuiw35CzXAtbKjkJi6Owij1RxNoNMbQQ905wN_fh1m6O3c2xu7kPd-jD7Sb05WnGZtWi_weeCpgEb4-C36HB_X8bu0_Lb_bwtfSIBxpx94BPaTtjldXu5suV4_nl95vLQrlS_QUbN6r7</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Rosato, Rosalba</creator><creator>Ciccone, G.</creator><creator>Bo, S.</creator><creator>Pagano, G. F.</creator><creator>Merletti, F.</creator><creator>Gregori, D.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200706</creationdate><title>Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov Chains and additive regression models</title><author>Rosato, Rosalba ; Ciccone, G. ; Bo, S. ; Pagano, G. F. ; Merletti, F. ; Gregori, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4042-87d5554ee662507c2d94084672ae3163ff31f6fa219ae1f29a851ad0eed6fda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aalen model</topic><topic>Cardiovascular Diseases - mortality</topic><topic>cause-specific hazard</topic><topic>Cohort Studies</topic><topic>competing risks model</topic><topic>Cox model</topic><topic>diabetes</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Female</topic><topic>Humans</topic><topic>Italy - epidemiology</topic><topic>Male</topic><topic>Markov Chains</topic><topic>Middle Aged</topic><topic>mortality</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Risk Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosato, Rosalba</creatorcontrib><creatorcontrib>Ciccone, G.</creatorcontrib><creatorcontrib>Bo, S.</creatorcontrib><creatorcontrib>Pagano, G. F.</creatorcontrib><creatorcontrib>Merletti, F.</creatorcontrib><creatorcontrib>Gregori, D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evaluation in clinical practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosato, Rosalba</au><au>Ciccone, G.</au><au>Bo, S.</au><au>Pagano, G. F.</au><au>Merletti, F.</au><au>Gregori, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov Chains and additive regression models</atitle><jtitle>Journal of evaluation in clinical practice</jtitle><addtitle>J Eval Clin Pract</addtitle><date>2007-06</date><risdate>2007</risdate><volume>13</volume><issue>3</issue><spage>422</spage><epage>428</epage><pages>422-428</pages><issn>1356-1294</issn><eissn>1365-2753</eissn><abstract>Rationale, aims and objectives  Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause‐specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results. Methods  Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause‐specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity. Results  For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow‐up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21–0.31] and 0.14 (95% CI = 0.09–0.18). Conclusions  Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co‐morbidities. The Aalen model, in addition, is shown to be better at identifying cause‐specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17518809</pmid><doi>10.1111/j.1365-2753.2006.00732.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1356-1294
ispartof Journal of evaluation in clinical practice, 2007-06, Vol.13 (3), p.422-428
issn 1356-1294
1365-2753
language eng
recordid cdi_proquest_miscellaneous_70517932
source MEDLINE; Wiley Blackwell Single Titles
subjects Aalen model
Cardiovascular Diseases - mortality
cause-specific hazard
Cohort Studies
competing risks model
Cox model
diabetes
Diabetes Mellitus, Type 2
Female
Humans
Italy - epidemiology
Male
Markov Chains
Middle Aged
mortality
Proportional Hazards Models
Regression Analysis
Risk Assessment
title Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov Chains and additive regression models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20cardiovascular%20mortality%20in%20type%202%20diabetes%20patients:%20an%20analysis%20based%20on%20competing%20risks%20Markov%20Chains%20and%20additive%20regression%20models&rft.jtitle=Journal%20of%20evaluation%20in%20clinical%20practice&rft.au=Rosato,%20Rosalba&rft.date=2007-06&rft.volume=13&rft.issue=3&rft.spage=422&rft.epage=428&rft.pages=422-428&rft.issn=1356-1294&rft.eissn=1365-2753&rft_id=info:doi/10.1111/j.1365-2753.2006.00732.x&rft_dat=%3Cproquest_cross%3E70517932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70517932&rft_id=info:pmid/17518809&rfr_iscdi=true