β-Arrestin-mediated Signaling Regulates Protein Synthesis

Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that β-arrestins, originally thought only to desensitize G protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-04, Vol.283 (16), p.10611-10620
Hauptverfasser: DeWire, Scott M., Kim, Jihee, Whalen, Erin J., Ahn, Seungkirl, Chen, Minyong, Lefkowitz, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10620
container_issue 16
container_start_page 10611
container_title The Journal of biological chemistry
container_volume 283
creator DeWire, Scott M.
Kim, Jihee
Whalen, Erin J.
Ahn, Seungkirl
Chen, Minyong
Lefkowitz, Robert J.
description Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that β-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of β-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by β-arrestins. We show that β-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that β-arrestins regulate protein synthesis reveals that the spectrum of β-arrestin-mediated signaling events is broader than previously imagined.
doi_str_mv 10.1074/jbc.M710515200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70503995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820620294</els_id><sourcerecordid>70503995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-23c31e3d1395d9e7de0716eb7d24bb87b09ec6a64ef1bdf73845abf7477611b03</originalsourceid><addsrcrecordid>eNqFkMFKJDEQhoO46Oju1ePunPbWY1Un6aS9ybCrgqI4K-wtJOnqMdLTrUmP4Gvtg-wzGZkBT2JdCoqv_io-xo4QZghKHD84P7tSCBJlCbDDJgiaF1zi3102ASixqEup99lBSg-QS9S4x_ZRl6qSWkzYyf9_xWmMlMbQFytqgh2pmS7Csrdd6JfTW1quuzxL05s4jBT66eKlH-8phfSVfWltl-jbth-yu9-__szPi8vrs4v56WXhBVdjUXLPkXiDvJZNTaohUFiRU00pnNPKQU2-spWgFl3TKq6FtK5VQqkK0QE_ZD83uY9xeFrnT80qJE9dZ3sa1skokMDrWn4KllBVleIig7MN6OOQUqTWPMawsvHFIJg3rSZrNe9a88L3bfLaZUnv-NZjBn5sgNYOxi5jSOZuUQJyAK25FG8RekNQVvUcKJrkA_U-K4_kR9MM4aPrr0dCjzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20666734</pqid></control><display><type>article</type><title>β-Arrestin-mediated Signaling Regulates Protein Synthesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>DeWire, Scott M. ; Kim, Jihee ; Whalen, Erin J. ; Ahn, Seungkirl ; Chen, Minyong ; Lefkowitz, Robert J.</creator><creatorcontrib>DeWire, Scott M. ; Kim, Jihee ; Whalen, Erin J. ; Ahn, Seungkirl ; Chen, Minyong ; Lefkowitz, Robert J.</creatorcontrib><description>Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that β-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of β-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by β-arrestins. We show that β-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that β-arrestins regulate protein synthesis reveals that the spectrum of β-arrestin-mediated signaling events is broader than previously imagined.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M710515200</identifier><identifier>PMID: 18276584</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arrestins - metabolism ; beta-Arrestins ; Chlorocebus aethiops ; COS Cells ; Enzyme Activation ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; Muscle, Smooth, Vascular - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Rats ; Rats, Sprague-Dawley</subject><ispartof>The Journal of biological chemistry, 2008-04, Vol.283 (16), p.10611-10620</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-23c31e3d1395d9e7de0716eb7d24bb87b09ec6a64ef1bdf73845abf7477611b03</citedby><cites>FETCH-LOGICAL-c437t-23c31e3d1395d9e7de0716eb7d24bb87b09ec6a64ef1bdf73845abf7477611b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18276584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeWire, Scott M.</creatorcontrib><creatorcontrib>Kim, Jihee</creatorcontrib><creatorcontrib>Whalen, Erin J.</creatorcontrib><creatorcontrib>Ahn, Seungkirl</creatorcontrib><creatorcontrib>Chen, Minyong</creatorcontrib><creatorcontrib>Lefkowitz, Robert J.</creatorcontrib><title>β-Arrestin-mediated Signaling Regulates Protein Synthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that β-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of β-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by β-arrestins. We show that β-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that β-arrestins regulate protein synthesis reveals that the spectrum of β-arrestin-mediated signaling events is broader than previously imagined.</description><subject>Animals</subject><subject>Arrestins - metabolism</subject><subject>beta-Arrestins</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>Enzyme Activation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFKJDEQhoO46Oju1ePunPbWY1Un6aS9ybCrgqI4K-wtJOnqMdLTrUmP4Gvtg-wzGZkBT2JdCoqv_io-xo4QZghKHD84P7tSCBJlCbDDJgiaF1zi3102ASixqEup99lBSg-QS9S4x_ZRl6qSWkzYyf9_xWmMlMbQFytqgh2pmS7Csrdd6JfTW1quuzxL05s4jBT66eKlH-8phfSVfWltl-jbth-yu9-__szPi8vrs4v56WXhBVdjUXLPkXiDvJZNTaohUFiRU00pnNPKQU2-spWgFl3TKq6FtK5VQqkK0QE_ZD83uY9xeFrnT80qJE9dZ3sa1skokMDrWn4KllBVleIig7MN6OOQUqTWPMawsvHFIJg3rSZrNe9a88L3bfLaZUnv-NZjBn5sgNYOxi5jSOZuUQJyAK25FG8RekNQVvUcKJrkA_U-K4_kR9MM4aPrr0dCjzM</recordid><startdate>20080418</startdate><enddate>20080418</enddate><creator>DeWire, Scott M.</creator><creator>Kim, Jihee</creator><creator>Whalen, Erin J.</creator><creator>Ahn, Seungkirl</creator><creator>Chen, Minyong</creator><creator>Lefkowitz, Robert J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20080418</creationdate><title>β-Arrestin-mediated Signaling Regulates Protein Synthesis</title><author>DeWire, Scott M. ; Kim, Jihee ; Whalen, Erin J. ; Ahn, Seungkirl ; Chen, Minyong ; Lefkowitz, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-23c31e3d1395d9e7de0716eb7d24bb87b09ec6a64ef1bdf73845abf7477611b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Arrestins - metabolism</topic><topic>beta-Arrestins</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>Enzyme Activation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeWire, Scott M.</creatorcontrib><creatorcontrib>Kim, Jihee</creatorcontrib><creatorcontrib>Whalen, Erin J.</creatorcontrib><creatorcontrib>Ahn, Seungkirl</creatorcontrib><creatorcontrib>Chen, Minyong</creatorcontrib><creatorcontrib>Lefkowitz, Robert J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeWire, Scott M.</au><au>Kim, Jihee</au><au>Whalen, Erin J.</au><au>Ahn, Seungkirl</au><au>Chen, Minyong</au><au>Lefkowitz, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β-Arrestin-mediated Signaling Regulates Protein Synthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-04-18</date><risdate>2008</risdate><volume>283</volume><issue>16</issue><spage>10611</spage><epage>10620</epage><pages>10611-10620</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that β-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of β-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by β-arrestins. We show that β-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that β-arrestins regulate protein synthesis reveals that the spectrum of β-arrestin-mediated signaling events is broader than previously imagined.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18276584</pmid><doi>10.1074/jbc.M710515200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-04, Vol.283 (16), p.10611-10620
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_70503995
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Arrestins - metabolism
beta-Arrestins
Chlorocebus aethiops
COS Cells
Enzyme Activation
HeLa Cells
Humans
Intracellular Signaling Peptides and Proteins - metabolism
Male
Mice
Mice, Inbred C57BL
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - metabolism
Muscle, Smooth, Vascular - metabolism
Protein-Serine-Threonine Kinases - metabolism
Rats
Rats, Sprague-Dawley
title β-Arrestin-mediated Signaling Regulates Protein Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2-Arrestin-mediated%20Signaling%20Regulates%20Protein%20Synthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=DeWire,%20Scott%20M.&rft.date=2008-04-18&rft.volume=283&rft.issue=16&rft.spage=10611&rft.epage=10620&rft.pages=10611-10620&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M710515200&rft_dat=%3Cproquest_cross%3E70503995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20666734&rft_id=info:pmid/18276584&rft_els_id=S0021925820620294&rfr_iscdi=true