On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method
Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been int...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2008-01, Vol.41 (6), p.1206-1212 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1212 |
---|---|
container_issue | 6 |
container_start_page | 1206 |
container_title | Journal of biomechanics |
container_volume | 41 |
creator | Gervaso, Francesca Capelli, Claudio Petrini, Lorenza Lattanzio, Simone Di Virgilio, Luca Migliavacca, Francesco |
description | Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion. |
doi_str_mv | 10.1016/j.jbiomech.2008.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70497946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929008000419</els_id><sourcerecordid>2744200281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEotvCX6giIXFLGH_EsS8IVEFBqtQDvVuOPek6JPY2zlbsv8fpLqrUCydb8jOvPX6mKC4J1ASI-DTUQ-fjhHZbUwBZA6mBtq-KDZEtqyiT8LrYAFBSKargrDhPaQCAlrfqbXFGJGs547ApHm5DuWyxxL5Hu6Qy9qXzeT9jWMq0zGbBe4-p9KGcosNx9OG-7Mw4xhgq_LMzwZluxIzmgqezQzmhCU9JvQ9-ydkjTmvchMs2unfFm96MCd-f1ovi7vu3u6sf1c3t9c-rrzeV5VwtlZCus5w6ZKylDZdKyqYRLRpLJReSd1R0tgFFFGudagRKYI0QsjPEEmnZRfHxGLub48Me06Inn2xuwASM-6Rb4KpVXGTwwwtwiPs55KdpAowrzkQjMyWOlJ1jSjP2ejf7ycyHDOnViB70PyN6NaKB6GwkF16e4vfdhO657KQgA1-OAObPePQ462Q9BovOz1mJdtH__47PLyJs9uStGX_jAdNzPzpRDfrXOhfrWIDMI8HzD_4FBva0kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034943658</pqid></control><display><type>article</type><title>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gervaso, Francesca ; Capelli, Claudio ; Petrini, Lorenza ; Lattanzio, Simone ; Di Virgilio, Luca ; Migliavacca, Francesco</creator><creatorcontrib>Gervaso, Francesca ; Capelli, Claudio ; Petrini, Lorenza ; Lattanzio, Simone ; Di Virgilio, Luca ; Migliavacca, Francesco</creatorcontrib><description>Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2008.01.027</identifier><identifier>PMID: 18374340</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Angioplasty ; Angioplasty, Balloon, Coronary ; Balloon-expandable stent ; Conflicts of interest ; Coronary Vessels - physiology ; Finite Element Analysis ; Finite element method ; Fluid dynamics ; Geometry ; Mathematical model ; Methods ; Models, Cardiovascular ; Physical Medicine and Rehabilitation ; Stents ; Stress analysis ; Veins & arteries</subject><ispartof>Journal of biomechanics, 2008-01, Vol.41 (6), p.1206-1212</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</citedby><cites>FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929008000419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18374340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gervaso, Francesca</creatorcontrib><creatorcontrib>Capelli, Claudio</creatorcontrib><creatorcontrib>Petrini, Lorenza</creatorcontrib><creatorcontrib>Lattanzio, Simone</creatorcontrib><creatorcontrib>Di Virgilio, Luca</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><title>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.</description><subject>Angioplasty</subject><subject>Angioplasty, Balloon, Coronary</subject><subject>Balloon-expandable stent</subject><subject>Conflicts of interest</subject><subject>Coronary Vessels - physiology</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Geometry</subject><subject>Mathematical model</subject><subject>Methods</subject><subject>Models, Cardiovascular</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Stents</subject><subject>Stress analysis</subject><subject>Veins & arteries</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk1v1DAQhiMEotvCX6giIXFLGH_EsS8IVEFBqtQDvVuOPek6JPY2zlbsv8fpLqrUCydb8jOvPX6mKC4J1ASI-DTUQ-fjhHZbUwBZA6mBtq-KDZEtqyiT8LrYAFBSKargrDhPaQCAlrfqbXFGJGs547ApHm5DuWyxxL5Hu6Qy9qXzeT9jWMq0zGbBe4-p9KGcosNx9OG-7Mw4xhgq_LMzwZluxIzmgqezQzmhCU9JvQ9-ydkjTmvchMs2unfFm96MCd-f1ovi7vu3u6sf1c3t9c-rrzeV5VwtlZCus5w6ZKylDZdKyqYRLRpLJReSd1R0tgFFFGudagRKYI0QsjPEEmnZRfHxGLub48Me06Inn2xuwASM-6Rb4KpVXGTwwwtwiPs55KdpAowrzkQjMyWOlJ1jSjP2ejf7ycyHDOnViB70PyN6NaKB6GwkF16e4vfdhO657KQgA1-OAObPePQ462Q9BovOz1mJdtH__47PLyJs9uStGX_jAdNzPzpRDfrXOhfrWIDMI8HzD_4FBva0kA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Gervaso, Francesca</creator><creator>Capelli, Claudio</creator><creator>Petrini, Lorenza</creator><creator>Lattanzio, Simone</creator><creator>Di Virgilio, Luca</creator><creator>Migliavacca, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</title><author>Gervaso, Francesca ; Capelli, Claudio ; Petrini, Lorenza ; Lattanzio, Simone ; Di Virgilio, Luca ; Migliavacca, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Angioplasty</topic><topic>Angioplasty, Balloon, Coronary</topic><topic>Balloon-expandable stent</topic><topic>Conflicts of interest</topic><topic>Coronary Vessels - physiology</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Geometry</topic><topic>Mathematical model</topic><topic>Methods</topic><topic>Models, Cardiovascular</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Stents</topic><topic>Stress analysis</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gervaso, Francesca</creatorcontrib><creatorcontrib>Capelli, Claudio</creatorcontrib><creatorcontrib>Petrini, Lorenza</creatorcontrib><creatorcontrib>Lattanzio, Simone</creatorcontrib><creatorcontrib>Di Virgilio, Luca</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gervaso, Francesca</au><au>Capelli, Claudio</au><au>Petrini, Lorenza</au><au>Lattanzio, Simone</au><au>Di Virgilio, Luca</au><au>Migliavacca, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>41</volume><issue>6</issue><spage>1206</spage><epage>1212</epage><pages>1206-1212</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18374340</pmid><doi>10.1016/j.jbiomech.2008.01.027</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2008-01, Vol.41 (6), p.1206-1212 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_70497946 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Angioplasty Angioplasty, Balloon, Coronary Balloon-expandable stent Conflicts of interest Coronary Vessels - physiology Finite Element Analysis Finite element method Fluid dynamics Geometry Mathematical model Methods Models, Cardiovascular Physical Medicine and Rehabilitation Stents Stress analysis Veins & arteries |
title | On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20effects%20of%20different%20strategies%20in%20modelling%20balloon-expandable%20stenting%20by%20means%20of%20finite%20element%20method&rft.jtitle=Journal%20of%20biomechanics&rft.au=Gervaso,%20Francesca&rft.date=2008-01-01&rft.volume=41&rft.issue=6&rft.spage=1206&rft.epage=1212&rft.pages=1206-1212&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2008.01.027&rft_dat=%3Cproquest_cross%3E2744200281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034943658&rft_id=info:pmid/18374340&rft_els_id=1_s2_0_S0021929008000419&rfr_iscdi=true |