On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method

Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2008-01, Vol.41 (6), p.1206-1212
Hauptverfasser: Gervaso, Francesca, Capelli, Claudio, Petrini, Lorenza, Lattanzio, Simone, Di Virgilio, Luca, Migliavacca, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1212
container_issue 6
container_start_page 1206
container_title Journal of biomechanics
container_volume 41
creator Gervaso, Francesca
Capelli, Claudio
Petrini, Lorenza
Lattanzio, Simone
Di Virgilio, Luca
Migliavacca, Francesco
description Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.
doi_str_mv 10.1016/j.jbiomech.2008.01.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70497946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929008000419</els_id><sourcerecordid>2744200281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEotvCX6giIXFLGH_EsS8IVEFBqtQDvVuOPek6JPY2zlbsv8fpLqrUCydb8jOvPX6mKC4J1ASI-DTUQ-fjhHZbUwBZA6mBtq-KDZEtqyiT8LrYAFBSKargrDhPaQCAlrfqbXFGJGs547ApHm5DuWyxxL5Hu6Qy9qXzeT9jWMq0zGbBe4-p9KGcosNx9OG-7Mw4xhgq_LMzwZluxIzmgqezQzmhCU9JvQ9-ydkjTmvchMs2unfFm96MCd-f1ovi7vu3u6sf1c3t9c-rrzeV5VwtlZCus5w6ZKylDZdKyqYRLRpLJReSd1R0tgFFFGudagRKYI0QsjPEEmnZRfHxGLub48Me06Inn2xuwASM-6Rb4KpVXGTwwwtwiPs55KdpAowrzkQjMyWOlJ1jSjP2ejf7ycyHDOnViB70PyN6NaKB6GwkF16e4vfdhO657KQgA1-OAObPePQ462Q9BovOz1mJdtH__47PLyJs9uStGX_jAdNzPzpRDfrXOhfrWIDMI8HzD_4FBva0kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034943658</pqid></control><display><type>article</type><title>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gervaso, Francesca ; Capelli, Claudio ; Petrini, Lorenza ; Lattanzio, Simone ; Di Virgilio, Luca ; Migliavacca, Francesco</creator><creatorcontrib>Gervaso, Francesca ; Capelli, Claudio ; Petrini, Lorenza ; Lattanzio, Simone ; Di Virgilio, Luca ; Migliavacca, Francesco</creatorcontrib><description>Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2008.01.027</identifier><identifier>PMID: 18374340</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Angioplasty ; Angioplasty, Balloon, Coronary ; Balloon-expandable stent ; Conflicts of interest ; Coronary Vessels - physiology ; Finite Element Analysis ; Finite element method ; Fluid dynamics ; Geometry ; Mathematical model ; Methods ; Models, Cardiovascular ; Physical Medicine and Rehabilitation ; Stents ; Stress analysis ; Veins &amp; arteries</subject><ispartof>Journal of biomechanics, 2008-01, Vol.41 (6), p.1206-1212</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</citedby><cites>FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929008000419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18374340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gervaso, Francesca</creatorcontrib><creatorcontrib>Capelli, Claudio</creatorcontrib><creatorcontrib>Petrini, Lorenza</creatorcontrib><creatorcontrib>Lattanzio, Simone</creatorcontrib><creatorcontrib>Di Virgilio, Luca</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><title>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.</description><subject>Angioplasty</subject><subject>Angioplasty, Balloon, Coronary</subject><subject>Balloon-expandable stent</subject><subject>Conflicts of interest</subject><subject>Coronary Vessels - physiology</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Geometry</subject><subject>Mathematical model</subject><subject>Methods</subject><subject>Models, Cardiovascular</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Stents</subject><subject>Stress analysis</subject><subject>Veins &amp; arteries</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk1v1DAQhiMEotvCX6giIXFLGH_EsS8IVEFBqtQDvVuOPek6JPY2zlbsv8fpLqrUCydb8jOvPX6mKC4J1ASI-DTUQ-fjhHZbUwBZA6mBtq-KDZEtqyiT8LrYAFBSKargrDhPaQCAlrfqbXFGJGs547ApHm5DuWyxxL5Hu6Qy9qXzeT9jWMq0zGbBe4-p9KGcosNx9OG-7Mw4xhgq_LMzwZluxIzmgqezQzmhCU9JvQ9-ydkjTmvchMs2unfFm96MCd-f1ovi7vu3u6sf1c3t9c-rrzeV5VwtlZCus5w6ZKylDZdKyqYRLRpLJReSd1R0tgFFFGudagRKYI0QsjPEEmnZRfHxGLub48Me06Inn2xuwASM-6Rb4KpVXGTwwwtwiPs55KdpAowrzkQjMyWOlJ1jSjP2ejf7ycyHDOnViB70PyN6NaKB6GwkF16e4vfdhO657KQgA1-OAObPePQ462Q9BovOz1mJdtH__47PLyJs9uStGX_jAdNzPzpRDfrXOhfrWIDMI8HzD_4FBva0kA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Gervaso, Francesca</creator><creator>Capelli, Claudio</creator><creator>Petrini, Lorenza</creator><creator>Lattanzio, Simone</creator><creator>Di Virgilio, Luca</creator><creator>Migliavacca, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</title><author>Gervaso, Francesca ; Capelli, Claudio ; Petrini, Lorenza ; Lattanzio, Simone ; Di Virgilio, Luca ; Migliavacca, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-68dbc42de33725489885567eac284684b26bc5091937d956e8035668ba1c18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Angioplasty</topic><topic>Angioplasty, Balloon, Coronary</topic><topic>Balloon-expandable stent</topic><topic>Conflicts of interest</topic><topic>Coronary Vessels - physiology</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Geometry</topic><topic>Mathematical model</topic><topic>Methods</topic><topic>Models, Cardiovascular</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Stents</topic><topic>Stress analysis</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gervaso, Francesca</creatorcontrib><creatorcontrib>Capelli, Claudio</creatorcontrib><creatorcontrib>Petrini, Lorenza</creatorcontrib><creatorcontrib>Lattanzio, Simone</creatorcontrib><creatorcontrib>Di Virgilio, Luca</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gervaso, Francesca</au><au>Capelli, Claudio</au><au>Petrini, Lorenza</au><au>Lattanzio, Simone</au><au>Di Virgilio, Luca</au><au>Migliavacca, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>41</volume><issue>6</issue><spage>1206</spage><epage>1212</epage><pages>1206-1212</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract In recent years, computational structural analyses have emerged as important tools to investigate the mechanical response of stent placement into arterial walls. Although most coronary stents are expanded by inflating a polymeric balloon, realistic computational balloon models have been introduced only recently. In the present study, the finite element method is applied to simulate three different approaches to evaluate stent-free expansion and stent expansion inside an artery. Three different stent expansion modelling techniques were analysed by: (i) imposing a uniform pressure on the stent internal surface, (ii) a rigid cylindrical surface expanded with displacement control and (iii) modelling a polymeric deformable balloon. The computational results showed differences in the free and confined-stent expansions due to different expansion techniques. The modelling technique of the balloon seems essential to estimate the level of injury caused on arterial walls during stent expansion.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18374340</pmid><doi>10.1016/j.jbiomech.2008.01.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2008-01, Vol.41 (6), p.1206-1212
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_70497946
source MEDLINE; Elsevier ScienceDirect Journals
subjects Angioplasty
Angioplasty, Balloon, Coronary
Balloon-expandable stent
Conflicts of interest
Coronary Vessels - physiology
Finite Element Analysis
Finite element method
Fluid dynamics
Geometry
Mathematical model
Methods
Models, Cardiovascular
Physical Medicine and Rehabilitation
Stents
Stress analysis
Veins & arteries
title On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20effects%20of%20different%20strategies%20in%20modelling%20balloon-expandable%20stenting%20by%20means%20of%20finite%20element%20method&rft.jtitle=Journal%20of%20biomechanics&rft.au=Gervaso,%20Francesca&rft.date=2008-01-01&rft.volume=41&rft.issue=6&rft.spage=1206&rft.epage=1212&rft.pages=1206-1212&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2008.01.027&rft_dat=%3Cproquest_cross%3E2744200281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034943658&rft_id=info:pmid/18374340&rft_els_id=1_s2_0_S0021929008000419&rfr_iscdi=true