Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor
Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a “rigor-like” conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2007-05, Vol.15 (5), p.553-564 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | 5 |
container_start_page | 553 |
container_title | Structure (London) |
container_volume | 15 |
creator | Yang, Yuting Gourinath, S. Kovács, Mihály Nyitray, László Reutzel, Robbie Himmel, Daniel M. O'Neall-Hennessey, Elizabeth Reshetnikova, Ludmilla Szent-Györgyi, Andrew G. Brown, Jerry H. Cohen, Carolyn |
description | Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a “rigor-like” conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states. |
doi_str_mv | 10.1016/j.str.2007.03.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70497905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212607001189</els_id><sourcerecordid>70497905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-3328c02aa3f045c0ff06ba2bb98f502fcb6caa91c714f20e643e85f1782dc7f13</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EotPSH8AGecUu4dn5FquqaimiI6p2urYc55nxkMTFzymaDb8dVzMSO1ZPT7r3SPcw9l5ALkDUn3Y5xZBLgCaHIgcBr9hKtE2blaKtX7MVdHWXSSHrE3ZKtAMAWQG8ZSeiqUAmxIr9uXc_fMhG9xP5QwyLiUtA4jb4ia8XMiPy9d6Tm4nf4zPqkX_DPV-j2erZmfRejTjhHIm7mcct8k3QMw2J4_zM73Tc_tZ74t7yzdYRvxhHTxGDM3ztow_v2BurR8Lz4z1jj9dXm8ub7Pb7l6-XF7eZKboyZkUhWwNS68JCWRmwFupey77vWpuWWNPXRutOmEaUVgLWZYFtZUXTysE0VhRn7OOB-xT8rwUpqsmRwXHUM_qFVANl13RQpaA4BE3wRAGtegpu0mGvBKgX6WqnknT1Il1BoZL01PlwhC_9hMO_xtFyCnw-BDBNfHYYFBmHs8HBBTRRDd79B_8XCoKUaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70497905</pqid></control><display><type>article</type><title>Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Yuting ; Gourinath, S. ; Kovács, Mihály ; Nyitray, László ; Reutzel, Robbie ; Himmel, Daniel M. ; O'Neall-Hennessey, Elizabeth ; Reshetnikova, Ludmilla ; Szent-Györgyi, Andrew G. ; Brown, Jerry H. ; Cohen, Carolyn</creator><creatorcontrib>Yang, Yuting ; Gourinath, S. ; Kovács, Mihály ; Nyitray, László ; Reutzel, Robbie ; Himmel, Daniel M. ; O'Neall-Hennessey, Elizabeth ; Reshetnikova, Ludmilla ; Szent-Györgyi, Andrew G. ; Brown, Jerry H. ; Cohen, Carolyn</creatorcontrib><description>Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a “rigor-like” conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2007.03.010</identifier><identifier>PMID: 17502101</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation - physiology ; Animals ; CELLBIO ; Crystallography, X-Ray ; Decapodiformes - chemistry ; Decapodiformes - metabolism ; Myosins - chemistry ; Myosins - physiology ; Pectinidae - chemistry ; Pectinidae - metabolism ; Protein Conformation ; Rigor Mortis - metabolism ; Signal Transduction - physiology</subject><ispartof>Structure (London), 2007-05, Vol.15 (5), p.553-564</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-3328c02aa3f045c0ff06ba2bb98f502fcb6caa91c714f20e643e85f1782dc7f13</citedby><cites>FETCH-LOGICAL-c394t-3328c02aa3f045c0ff06ba2bb98f502fcb6caa91c714f20e643e85f1782dc7f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2007.03.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17502101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuting</creatorcontrib><creatorcontrib>Gourinath, S.</creatorcontrib><creatorcontrib>Kovács, Mihály</creatorcontrib><creatorcontrib>Nyitray, László</creatorcontrib><creatorcontrib>Reutzel, Robbie</creatorcontrib><creatorcontrib>Himmel, Daniel M.</creatorcontrib><creatorcontrib>O'Neall-Hennessey, Elizabeth</creatorcontrib><creatorcontrib>Reshetnikova, Ludmilla</creatorcontrib><creatorcontrib>Szent-Györgyi, Andrew G.</creatorcontrib><creatorcontrib>Brown, Jerry H.</creatorcontrib><creatorcontrib>Cohen, Carolyn</creatorcontrib><title>Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a “rigor-like” conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.</description><subject>Allosteric Regulation - physiology</subject><subject>Animals</subject><subject>CELLBIO</subject><subject>Crystallography, X-Ray</subject><subject>Decapodiformes - chemistry</subject><subject>Decapodiformes - metabolism</subject><subject>Myosins - chemistry</subject><subject>Myosins - physiology</subject><subject>Pectinidae - chemistry</subject><subject>Pectinidae - metabolism</subject><subject>Protein Conformation</subject><subject>Rigor Mortis - metabolism</subject><subject>Signal Transduction - physiology</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EotPSH8AGecUu4dn5FquqaimiI6p2urYc55nxkMTFzymaDb8dVzMSO1ZPT7r3SPcw9l5ALkDUn3Y5xZBLgCaHIgcBr9hKtE2blaKtX7MVdHWXSSHrE3ZKtAMAWQG8ZSeiqUAmxIr9uXc_fMhG9xP5QwyLiUtA4jb4ia8XMiPy9d6Tm4nf4zPqkX_DPV-j2erZmfRejTjhHIm7mcct8k3QMw2J4_zM73Tc_tZ74t7yzdYRvxhHTxGDM3ztow_v2BurR8Lz4z1jj9dXm8ub7Pb7l6-XF7eZKboyZkUhWwNS68JCWRmwFupey77vWpuWWNPXRutOmEaUVgLWZYFtZUXTysE0VhRn7OOB-xT8rwUpqsmRwXHUM_qFVANl13RQpaA4BE3wRAGtegpu0mGvBKgX6WqnknT1Il1BoZL01PlwhC_9hMO_xtFyCnw-BDBNfHYYFBmHs8HBBTRRDd79B_8XCoKUaw</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Yang, Yuting</creator><creator>Gourinath, S.</creator><creator>Kovács, Mihály</creator><creator>Nyitray, László</creator><creator>Reutzel, Robbie</creator><creator>Himmel, Daniel M.</creator><creator>O'Neall-Hennessey, Elizabeth</creator><creator>Reshetnikova, Ludmilla</creator><creator>Szent-Györgyi, Andrew G.</creator><creator>Brown, Jerry H.</creator><creator>Cohen, Carolyn</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070501</creationdate><title>Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor</title><author>Yang, Yuting ; Gourinath, S. ; Kovács, Mihály ; Nyitray, László ; Reutzel, Robbie ; Himmel, Daniel M. ; O'Neall-Hennessey, Elizabeth ; Reshetnikova, Ludmilla ; Szent-Györgyi, Andrew G. ; Brown, Jerry H. ; Cohen, Carolyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-3328c02aa3f045c0ff06ba2bb98f502fcb6caa91c714f20e643e85f1782dc7f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Allosteric Regulation - physiology</topic><topic>Animals</topic><topic>CELLBIO</topic><topic>Crystallography, X-Ray</topic><topic>Decapodiformes - chemistry</topic><topic>Decapodiformes - metabolism</topic><topic>Myosins - chemistry</topic><topic>Myosins - physiology</topic><topic>Pectinidae - chemistry</topic><topic>Pectinidae - metabolism</topic><topic>Protein Conformation</topic><topic>Rigor Mortis - metabolism</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuting</creatorcontrib><creatorcontrib>Gourinath, S.</creatorcontrib><creatorcontrib>Kovács, Mihály</creatorcontrib><creatorcontrib>Nyitray, László</creatorcontrib><creatorcontrib>Reutzel, Robbie</creatorcontrib><creatorcontrib>Himmel, Daniel M.</creatorcontrib><creatorcontrib>O'Neall-Hennessey, Elizabeth</creatorcontrib><creatorcontrib>Reshetnikova, Ludmilla</creatorcontrib><creatorcontrib>Szent-Györgyi, Andrew G.</creatorcontrib><creatorcontrib>Brown, Jerry H.</creatorcontrib><creatorcontrib>Cohen, Carolyn</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuting</au><au>Gourinath, S.</au><au>Kovács, Mihály</au><au>Nyitray, László</au><au>Reutzel, Robbie</au><au>Himmel, Daniel M.</au><au>O'Neall-Hennessey, Elizabeth</au><au>Reshetnikova, Ludmilla</au><au>Szent-Györgyi, Andrew G.</au><au>Brown, Jerry H.</au><au>Cohen, Carolyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>15</volume><issue>5</issue><spage>553</spage><epage>564</epage><pages>553-564</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a “rigor-like” conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17502101</pmid><doi>10.1016/j.str.2007.03.010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2007-05, Vol.15 (5), p.553-564 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_70497905 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Allosteric Regulation - physiology Animals CELLBIO Crystallography, X-Ray Decapodiformes - chemistry Decapodiformes - metabolism Myosins - chemistry Myosins - physiology Pectinidae - chemistry Pectinidae - metabolism Protein Conformation Rigor Mortis - metabolism Signal Transduction - physiology |
title | Rigor-like Structures from Muscle Myosins Reveal Key Mechanical Elements in the Transduction Pathways of This Allosteric Motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigor-like%20Structures%20from%20Muscle%20Myosins%20Reveal%20Key%20Mechanical%20Elements%20in%20the%20Transduction%20Pathways%20of%20This%20Allosteric%20Motor&rft.jtitle=Structure%20(London)&rft.au=Yang,%20Yuting&rft.date=2007-05-01&rft.volume=15&rft.issue=5&rft.spage=553&rft.epage=564&rft.pages=553-564&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2007.03.010&rft_dat=%3Cproquest_cross%3E70497905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70497905&rft_id=info:pmid/17502101&rft_els_id=S0969212607001189&rfr_iscdi=true |