Microfluidic Droplet-Based Liquid−Liquid Extraction
We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases....
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-04, Vol.80 (8), p.2680-2687 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2687 |
---|---|
container_issue | 8 |
container_start_page | 2680 |
container_title | Analytical chemistry (Washington) |
container_volume | 80 |
creator | Mary, Pascaline Studer, Vincent Tabeling, Patrick |
description | We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems. |
doi_str_mv | 10.1021/ac800088s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70494535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70494535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</originalsourceid><addsrcrecordid>eNpl0M1KAzEQB_AgitbqwReQIih4WJ18bdKj3xVaVNSLl5BNshDddttkF_QNPPuIPomRlhb0lDDzY5j5I7SH4QQDwafaSACQMq6hDuYEslxKso46qUgzIgC20HaMrwAYA8430RaWlGMh8w7iI29CXVatt970LkM9rVyTnevobG_oZ6n8_fk1__Su3pugTePryQ7aKHUV3e7i7aLn66uni0E2vLu5vTgbZpqBbLKSCwbMYihZThx3BWdWgDVMW2cL7AjLqSi4FZTLvCBguE4tmpemLPqF0LSLjuZzp6GetS42auyjcVWlJ65uoxLA-oxTnuDBH_hat2GSdlMkHSol8F90PEfp4hiDK9U0-LEOHwqD-g1SLYNMdn8xsC3Gzq7kIrkEDhdAR6OrMuiJ8XHpCFDAgtHksrnzsXHvy74ObyoXVHD1dP-oXkasP3wYParBaq42cXXE_wV_AAnTlYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217888055</pqid></control><display><type>article</type><title>Microfluidic Droplet-Based Liquid−Liquid Extraction</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mary, Pascaline ; Studer, Vincent ; Tabeling, Patrick</creator><creatorcontrib>Mary, Pascaline ; Studer, Vincent ; Tabeling, Patrick</creatorcontrib><description>We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac800088s</identifier><identifier>PMID: 18351786</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied fluid mechanics ; Chemistry ; Computer Simulation ; Exact sciences and technology ; Extraction processes ; Fluid dynamics ; Fluidics ; Fluorescein - chemistry ; Fundamental areas of phenomenology (including applications) ; Kinetics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Octanols - chemistry ; Phase transitions ; Physics ; Solution chemistry ; Spectrometric and optical methods ; Spectrometry, Fluorescence ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2008-04, Vol.80 (8), p.2680-2687</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</citedby><cites>FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac800088s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac800088s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20301743$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18351786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mary, Pascaline</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><creatorcontrib>Tabeling, Patrick</creatorcontrib><title>Microfluidic Droplet-Based Liquid−Liquid Extraction</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.</description><subject>Analytical chemistry</subject><subject>Applied fluid mechanics</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Extraction processes</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fluorescein - chemistry</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinetics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Octanols - chemistry</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Solution chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Spectrometry, Fluorescence</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0M1KAzEQB_AgitbqwReQIih4WJ18bdKj3xVaVNSLl5BNshDddttkF_QNPPuIPomRlhb0lDDzY5j5I7SH4QQDwafaSACQMq6hDuYEslxKso46qUgzIgC20HaMrwAYA8430RaWlGMh8w7iI29CXVatt970LkM9rVyTnevobG_oZ6n8_fk1__Su3pugTePryQ7aKHUV3e7i7aLn66uni0E2vLu5vTgbZpqBbLKSCwbMYihZThx3BWdWgDVMW2cL7AjLqSi4FZTLvCBguE4tmpemLPqF0LSLjuZzp6GetS42auyjcVWlJ65uoxLA-oxTnuDBH_hat2GSdlMkHSol8F90PEfp4hiDK9U0-LEOHwqD-g1SLYNMdn8xsC3Gzq7kIrkEDhdAR6OrMuiJ8XHpCFDAgtHksrnzsXHvy74ObyoXVHD1dP-oXkasP3wYParBaq42cXXE_wV_AAnTlYc</recordid><startdate>20080415</startdate><enddate>20080415</enddate><creator>Mary, Pascaline</creator><creator>Studer, Vincent</creator><creator>Tabeling, Patrick</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080415</creationdate><title>Microfluidic Droplet-Based Liquid−Liquid Extraction</title><author>Mary, Pascaline ; Studer, Vincent ; Tabeling, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Applied fluid mechanics</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Extraction processes</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fluorescein - chemistry</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinetics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Octanols - chemistry</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Solution chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Spectrometry, Fluorescence</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mary, Pascaline</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><creatorcontrib>Tabeling, Patrick</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mary, Pascaline</au><au>Studer, Vincent</au><au>Tabeling, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Droplet-Based Liquid−Liquid Extraction</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-04-15</date><risdate>2008</risdate><volume>80</volume><issue>8</issue><spage>2680</spage><epage>2687</epage><pages>2680-2687</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18351786</pmid><doi>10.1021/ac800088s</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2008-04, Vol.80 (8), p.2680-2687 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70494535 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical chemistry Applied fluid mechanics Chemistry Computer Simulation Exact sciences and technology Extraction processes Fluid dynamics Fluidics Fluorescein - chemistry Fundamental areas of phenomenology (including applications) Kinetics Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Octanols - chemistry Phase transitions Physics Solution chemistry Spectrometric and optical methods Spectrometry, Fluorescence Water - chemistry |
title | Microfluidic Droplet-Based Liquid−Liquid Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Droplet-Based%20Liquid%E2%88%92Liquid%20Extraction&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mary,%20Pascaline&rft.date=2008-04-15&rft.volume=80&rft.issue=8&rft.spage=2680&rft.epage=2687&rft.pages=2680-2687&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac800088s&rft_dat=%3Cproquest_cross%3E70494535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217888055&rft_id=info:pmid/18351786&rfr_iscdi=true |