Microfluidic Droplet-Based Liquid−Liquid Extraction

We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-04, Vol.80 (8), p.2680-2687
Hauptverfasser: Mary, Pascaline, Studer, Vincent, Tabeling, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2687
container_issue 8
container_start_page 2680
container_title Analytical chemistry (Washington)
container_volume 80
creator Mary, Pascaline
Studer, Vincent
Tabeling, Patrick
description We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.
doi_str_mv 10.1021/ac800088s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70494535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70494535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</originalsourceid><addsrcrecordid>eNpl0M1KAzEQB_AgitbqwReQIih4WJ18bdKj3xVaVNSLl5BNshDddttkF_QNPPuIPomRlhb0lDDzY5j5I7SH4QQDwafaSACQMq6hDuYEslxKso46qUgzIgC20HaMrwAYA8430RaWlGMh8w7iI29CXVatt970LkM9rVyTnevobG_oZ6n8_fk1__Su3pugTePryQ7aKHUV3e7i7aLn66uni0E2vLu5vTgbZpqBbLKSCwbMYihZThx3BWdWgDVMW2cL7AjLqSi4FZTLvCBguE4tmpemLPqF0LSLjuZzp6GetS42auyjcVWlJ65uoxLA-oxTnuDBH_hat2GSdlMkHSol8F90PEfp4hiDK9U0-LEOHwqD-g1SLYNMdn8xsC3Gzq7kIrkEDhdAR6OrMuiJ8XHpCFDAgtHksrnzsXHvy74ObyoXVHD1dP-oXkasP3wYParBaq42cXXE_wV_AAnTlYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217888055</pqid></control><display><type>article</type><title>Microfluidic Droplet-Based Liquid−Liquid Extraction</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mary, Pascaline ; Studer, Vincent ; Tabeling, Patrick</creator><creatorcontrib>Mary, Pascaline ; Studer, Vincent ; Tabeling, Patrick</creatorcontrib><description>We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac800088s</identifier><identifier>PMID: 18351786</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied fluid mechanics ; Chemistry ; Computer Simulation ; Exact sciences and technology ; Extraction processes ; Fluid dynamics ; Fluidics ; Fluorescein - chemistry ; Fundamental areas of phenomenology (including applications) ; Kinetics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Octanols - chemistry ; Phase transitions ; Physics ; Solution chemistry ; Spectrometric and optical methods ; Spectrometry, Fluorescence ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2008-04, Vol.80 (8), p.2680-2687</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</citedby><cites>FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac800088s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac800088s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20301743$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18351786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mary, Pascaline</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><creatorcontrib>Tabeling, Patrick</creatorcontrib><title>Microfluidic Droplet-Based Liquid−Liquid Extraction</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.</description><subject>Analytical chemistry</subject><subject>Applied fluid mechanics</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Extraction processes</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fluorescein - chemistry</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinetics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Octanols - chemistry</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Solution chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Spectrometry, Fluorescence</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0M1KAzEQB_AgitbqwReQIih4WJ18bdKj3xVaVNSLl5BNshDddttkF_QNPPuIPomRlhb0lDDzY5j5I7SH4QQDwafaSACQMq6hDuYEslxKso46qUgzIgC20HaMrwAYA8430RaWlGMh8w7iI29CXVatt970LkM9rVyTnevobG_oZ6n8_fk1__Su3pugTePryQ7aKHUV3e7i7aLn66uni0E2vLu5vTgbZpqBbLKSCwbMYihZThx3BWdWgDVMW2cL7AjLqSi4FZTLvCBguE4tmpemLPqF0LSLjuZzp6GetS42auyjcVWlJ65uoxLA-oxTnuDBH_hat2GSdlMkHSol8F90PEfp4hiDK9U0-LEOHwqD-g1SLYNMdn8xsC3Gzq7kIrkEDhdAR6OrMuiJ8XHpCFDAgtHksrnzsXHvy74ObyoXVHD1dP-oXkasP3wYParBaq42cXXE_wV_AAnTlYc</recordid><startdate>20080415</startdate><enddate>20080415</enddate><creator>Mary, Pascaline</creator><creator>Studer, Vincent</creator><creator>Tabeling, Patrick</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080415</creationdate><title>Microfluidic Droplet-Based Liquid−Liquid Extraction</title><author>Mary, Pascaline ; Studer, Vincent ; Tabeling, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-f57404d10f462e5eb54d70dc4adedb1e24637b5d73586b20c5a4ad36fcfb9b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Applied fluid mechanics</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Extraction processes</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fluorescein - chemistry</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinetics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Octanols - chemistry</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Solution chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Spectrometry, Fluorescence</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mary, Pascaline</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><creatorcontrib>Tabeling, Patrick</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mary, Pascaline</au><au>Studer, Vincent</au><au>Tabeling, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Droplet-Based Liquid−Liquid Extraction</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-04-15</date><risdate>2008</risdate><volume>80</volume><issue>8</issue><spage>2680</spage><epage>2687</epage><pages>2680-2687</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solutefluoresceinfrom the external phase (extraction) and the opposite case, where droplets reject a soluterhodamineinto the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe -2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18351786</pmid><doi>10.1021/ac800088s</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-04, Vol.80 (8), p.2680-2687
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70494535
source MEDLINE; American Chemical Society Journals
subjects Analytical chemistry
Applied fluid mechanics
Chemistry
Computer Simulation
Exact sciences and technology
Extraction processes
Fluid dynamics
Fluidics
Fluorescein - chemistry
Fundamental areas of phenomenology (including applications)
Kinetics
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Octanols - chemistry
Phase transitions
Physics
Solution chemistry
Spectrometric and optical methods
Spectrometry, Fluorescence
Water - chemistry
title Microfluidic Droplet-Based Liquid−Liquid Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Droplet-Based%20Liquid%E2%88%92Liquid%20Extraction&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mary,%20Pascaline&rft.date=2008-04-15&rft.volume=80&rft.issue=8&rft.spage=2680&rft.epage=2687&rft.pages=2680-2687&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac800088s&rft_dat=%3Cproquest_cross%3E70494535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217888055&rft_id=info:pmid/18351786&rfr_iscdi=true