Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging
The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a ch...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-04, Vol.80 (8), p.2957-2962 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2962 |
---|---|
container_issue | 8 |
container_start_page | 2957 |
container_title | Analytical chemistry (Washington) |
container_volume | 80 |
creator | Sorber, Joerg Steiner, Gerald Schulz, Volker Guenther, Margarita Gerlach, Gerald Salzer, Reiner Arndt, Karl-Friedrich |
description | The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a chemomechanical transducer. The sensor consists of a pH-responsive PAA/PVA hydrogel and a standard pressure sensor chip. However, a time-dependent sensor output voltage mirrors only the physical swelling process of the hydrogel but not the corresponding chemical reactions. Therefore, an investigation of the swelling behavior of this hydrogel is essential for the optimization of sensor design. In this work, Fourier transform infrared (FT-IR) spectroscopic imaging was used to study the swelling of the hydrogel under in situ conditions. In particular, laterally and time-resolved FT-IR images were obtained in the attenuated total reflection mode and the entire data set of more than 80 000 FT-IR spectra was evaluated by principal component analysis (PCA). The first and third principal components (PCs) indicate the swelling process. Molecular changes within the carboxyl groups were observed in the second and fourth PC and identified as key processes for the swelling behavior. It was found that time-dependent molecular changes are similar to the electrical sensor output signal. The results of the FT-IR spectroscopic images render an improved chemical sensor possible and demonstrate that in situ FT-IR imaging is a powerful method for the characterization of molecular processes within chemical-sensitive materials. |
doi_str_mv | 10.1021/ac702598n |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70492784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70492784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-4315467cf1c13d2dd9d9c7ca7df19d33dc7582c215eea511c500977293e84c033</originalsourceid><addsrcrecordid>eNpl0cFuEzEQBmALgWgoHHgBZCGBxGFhbK9jL7dSURKoRGjSs2Xs2WjLZr3YuxXhxJXX5ElwlSiR4GRL8_nXjIeQpwxeM-DsjXUKuKx0d49MmORQTLXm98kEAETBFcAJeZTSDQBjwKYPyQnTAkTFqgnZzrY-hjW2xTub0NNFgz9DxNSkoblF2s_oErsUYnr759dvOu9uMRfWdmhCl-h1aro1vVgV8yt6NgzYjXbIGasw2JZeYd2iu4N02edLDMmFvnF0vrHr_O4xeVDbNuGT_XlKri_er85nxeXnD_Pzs8vClqCHohRMllPlauaY8Nz7yldOOat8zSovhHdKau44k4hWMuYkQKUUrwTq0oEQp-TlLreP4fuY2zebJjlsW9thGJNRUFZc6TLD5__AmzDGLvdmOFNaK8FlRq92yOV5UsTa9LHZ2Lg1DMzdMsxhGdk-2weOXzfoj3L_-xm82AObnG3raDvXpIPjIIAppbIrdi5vBX8c6jZ-M1MllDSrxdIs5ELyj5--GH3MtS4dh_i_wb_Osa1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217887325</pqid></control><display><type>article</type><title>Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sorber, Joerg ; Steiner, Gerald ; Schulz, Volker ; Guenther, Margarita ; Gerlach, Gerald ; Salzer, Reiner ; Arndt, Karl-Friedrich</creator><creatorcontrib>Sorber, Joerg ; Steiner, Gerald ; Schulz, Volker ; Guenther, Margarita ; Gerlach, Gerald ; Salzer, Reiner ; Arndt, Karl-Friedrich</creatorcontrib><description>The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a chemomechanical transducer. The sensor consists of a pH-responsive PAA/PVA hydrogel and a standard pressure sensor chip. However, a time-dependent sensor output voltage mirrors only the physical swelling process of the hydrogel but not the corresponding chemical reactions. Therefore, an investigation of the swelling behavior of this hydrogel is essential for the optimization of sensor design. In this work, Fourier transform infrared (FT-IR) spectroscopic imaging was used to study the swelling of the hydrogel under in situ conditions. In particular, laterally and time-resolved FT-IR images were obtained in the attenuated total reflection mode and the entire data set of more than 80 000 FT-IR spectra was evaluated by principal component analysis (PCA). The first and third principal components (PCs) indicate the swelling process. Molecular changes within the carboxyl groups were observed in the second and fourth PC and identified as key processes for the swelling behavior. It was found that time-dependent molecular changes are similar to the electrical sensor output signal. The results of the FT-IR spectroscopic images render an improved chemical sensor possible and demonstrate that in situ FT-IR imaging is a powerful method for the characterization of molecular processes within chemical-sensitive materials.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac702598n</identifier><identifier>PMID: 18303919</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Acrylics ; Analytical chemistry ; Biochemistry ; Biosensors ; Chemistry ; Exact sciences and technology ; Fourier transforms ; General, instrumentation ; Hydrogels - chemistry ; Hydrogen-Ion Concentration ; Infrared imaging systems ; Polyvinyl Alcohol - chemistry ; Spectrometric and optical methods ; Spectroscopy, Fourier Transform Infrared - methods ; Spectrum analysis</subject><ispartof>Analytical chemistry (Washington), 2008-04, Vol.80 (8), p.2957-2962</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-4315467cf1c13d2dd9d9c7ca7df19d33dc7582c215eea511c500977293e84c033</citedby><cites>FETCH-LOGICAL-a408t-4315467cf1c13d2dd9d9c7ca7df19d33dc7582c215eea511c500977293e84c033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac702598n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac702598n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20301777$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18303919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorber, Joerg</creatorcontrib><creatorcontrib>Steiner, Gerald</creatorcontrib><creatorcontrib>Schulz, Volker</creatorcontrib><creatorcontrib>Guenther, Margarita</creatorcontrib><creatorcontrib>Gerlach, Gerald</creatorcontrib><creatorcontrib>Salzer, Reiner</creatorcontrib><creatorcontrib>Arndt, Karl-Friedrich</creatorcontrib><title>Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a chemomechanical transducer. The sensor consists of a pH-responsive PAA/PVA hydrogel and a standard pressure sensor chip. However, a time-dependent sensor output voltage mirrors only the physical swelling process of the hydrogel but not the corresponding chemical reactions. Therefore, an investigation of the swelling behavior of this hydrogel is essential for the optimization of sensor design. In this work, Fourier transform infrared (FT-IR) spectroscopic imaging was used to study the swelling of the hydrogel under in situ conditions. In particular, laterally and time-resolved FT-IR images were obtained in the attenuated total reflection mode and the entire data set of more than 80 000 FT-IR spectra was evaluated by principal component analysis (PCA). The first and third principal components (PCs) indicate the swelling process. Molecular changes within the carboxyl groups were observed in the second and fourth PC and identified as key processes for the swelling behavior. It was found that time-dependent molecular changes are similar to the electrical sensor output signal. The results of the FT-IR spectroscopic images render an improved chemical sensor possible and demonstrate that in situ FT-IR imaging is a powerful method for the characterization of molecular processes within chemical-sensitive materials.</description><subject>Acrylic Resins - chemistry</subject><subject>Acrylics</subject><subject>Analytical chemistry</subject><subject>Biochemistry</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>General, instrumentation</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infrared imaging systems</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Spectrum analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0cFuEzEQBmALgWgoHHgBZCGBxGFhbK9jL7dSURKoRGjSs2Xs2WjLZr3YuxXhxJXX5ElwlSiR4GRL8_nXjIeQpwxeM-DsjXUKuKx0d49MmORQTLXm98kEAETBFcAJeZTSDQBjwKYPyQnTAkTFqgnZzrY-hjW2xTub0NNFgz9DxNSkoblF2s_oErsUYnr759dvOu9uMRfWdmhCl-h1aro1vVgV8yt6NgzYjXbIGasw2JZeYd2iu4N02edLDMmFvnF0vrHr_O4xeVDbNuGT_XlKri_er85nxeXnD_Pzs8vClqCHohRMllPlauaY8Nz7yldOOat8zSovhHdKau44k4hWMuYkQKUUrwTq0oEQp-TlLreP4fuY2zebJjlsW9thGJNRUFZc6TLD5__AmzDGLvdmOFNaK8FlRq92yOV5UsTa9LHZ2Lg1DMzdMsxhGdk-2weOXzfoj3L_-xm82AObnG3raDvXpIPjIIAppbIrdi5vBX8c6jZ-M1MllDSrxdIs5ELyj5--GH3MtS4dh_i_wb_Osa1E</recordid><startdate>20080415</startdate><enddate>20080415</enddate><creator>Sorber, Joerg</creator><creator>Steiner, Gerald</creator><creator>Schulz, Volker</creator><creator>Guenther, Margarita</creator><creator>Gerlach, Gerald</creator><creator>Salzer, Reiner</creator><creator>Arndt, Karl-Friedrich</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080415</creationdate><title>Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging</title><author>Sorber, Joerg ; Steiner, Gerald ; Schulz, Volker ; Guenther, Margarita ; Gerlach, Gerald ; Salzer, Reiner ; Arndt, Karl-Friedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-4315467cf1c13d2dd9d9c7ca7df19d33dc7582c215eea511c500977293e84c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Acrylics</topic><topic>Analytical chemistry</topic><topic>Biochemistry</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>General, instrumentation</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infrared imaging systems</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorber, Joerg</creatorcontrib><creatorcontrib>Steiner, Gerald</creatorcontrib><creatorcontrib>Schulz, Volker</creatorcontrib><creatorcontrib>Guenther, Margarita</creatorcontrib><creatorcontrib>Gerlach, Gerald</creatorcontrib><creatorcontrib>Salzer, Reiner</creatorcontrib><creatorcontrib>Arndt, Karl-Friedrich</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorber, Joerg</au><au>Steiner, Gerald</au><au>Schulz, Volker</au><au>Guenther, Margarita</au><au>Gerlach, Gerald</au><au>Salzer, Reiner</au><au>Arndt, Karl-Friedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-04-15</date><risdate>2008</risdate><volume>80</volume><issue>8</issue><spage>2957</spage><epage>2962</epage><pages>2957-2962</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a chemomechanical transducer. The sensor consists of a pH-responsive PAA/PVA hydrogel and a standard pressure sensor chip. However, a time-dependent sensor output voltage mirrors only the physical swelling process of the hydrogel but not the corresponding chemical reactions. Therefore, an investigation of the swelling behavior of this hydrogel is essential for the optimization of sensor design. In this work, Fourier transform infrared (FT-IR) spectroscopic imaging was used to study the swelling of the hydrogel under in situ conditions. In particular, laterally and time-resolved FT-IR images were obtained in the attenuated total reflection mode and the entire data set of more than 80 000 FT-IR spectra was evaluated by principal component analysis (PCA). The first and third principal components (PCs) indicate the swelling process. Molecular changes within the carboxyl groups were observed in the second and fourth PC and identified as key processes for the swelling behavior. It was found that time-dependent molecular changes are similar to the electrical sensor output signal. The results of the FT-IR spectroscopic images render an improved chemical sensor possible and demonstrate that in situ FT-IR imaging is a powerful method for the characterization of molecular processes within chemical-sensitive materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18303919</pmid><doi>10.1021/ac702598n</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2008-04, Vol.80 (8), p.2957-2962 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70492784 |
source | MEDLINE; American Chemical Society Journals |
subjects | Acrylic Resins - chemistry Acrylics Analytical chemistry Biochemistry Biosensors Chemistry Exact sciences and technology Fourier transforms General, instrumentation Hydrogels - chemistry Hydrogen-Ion Concentration Infrared imaging systems Polyvinyl Alcohol - chemistry Spectrometric and optical methods Spectroscopy, Fourier Transform Infrared - methods Spectrum analysis |
title | Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel-Based%20Piezoresistive%20pH%20Sensors:%E2%80%89%20Investigations%20Using%20FT-IR%20Attenuated%20Total%20Reflection%20Spectroscopic%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Sorber,%20Joerg&rft.date=2008-04-15&rft.volume=80&rft.issue=8&rft.spage=2957&rft.epage=2962&rft.pages=2957-2962&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac702598n&rft_dat=%3Cproquest_cross%3E70492784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217887325&rft_id=info:pmid/18303919&rfr_iscdi=true |