The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice
Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the in vivo importance of the dominating mitochondrial variant, GPAT1, a novel GPAT1 −/− mouse model was generated and stu...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2008-05, Vol.369 (4), p.1065-1070 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1070 |
---|---|
container_issue | 4 |
container_start_page | 1065 |
container_title | Biochemical and biophysical research communications |
container_volume | 369 |
creator | Yazdi, Misak Ahnmark, Andrea William-Olsson, Lena Snaith, Michael Turner, Nigel Osla, Fredrik Wedin, Marianne Asztély, Anna-Karin Elmgren, Anders Bohlooly-Y, Mohammad Schreyer, Sandra Lindén, Daniel |
description | Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the
in vivo importance of the dominating mitochondrial variant, GPAT1, a novel
GPAT1
−/−
mouse model was generated and studied. Female
GPAT1
−/−
mice had reduced body weight-gain and adiposity when fed chow diet compared with littermate wild-type controls. Furthermore,
GPAT1
−/−
females on chow diet showed decreased liver TAG content, plasma cholesterol and TAG levels and increased
ex vivo liver fatty acid oxidation and plasma ketone bodies. However, these beneficial effects were abolished and the glucose tolerance tended to be impaired when
GPAT1
−/−
females were fed a long-term high-fat diet (HFD). GPAT1-deficiency was not associated with altered whole body energy expenditure or respiratory exchange ratio. In addition, there were no changes in male
GPAT1
−/−
mice fed either diet except for increased plasma ketone bodies on chow diet, indicating a gender-specific phenotype. Thus, GPAT1-deficiency does not protect against HFD-induced obesity, hepatic steatosis or whole body glucose intolerance. |
doi_str_mv | 10.1016/j.bbrc.2008.02.156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70471986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X08004336</els_id><sourcerecordid>70471986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4b55dc7082192e05de1a4e3833177570e63c9b09904a041b3dc277799d529c583</originalsourceid><addsrcrecordid>eNqFkc1u1DAURq0K1E4LL8ACecUu4dr5cSyxQRUtlSqxKRI7y7FvJh4lcbAdpHkBnhuPZiR2sPLinu-78j2EvGNQMmDtx0PZ98GUHKArgZesaa_IjoGEgjOoX5EdALQFl-zHDbmN8QDAWN3Ka3LDuqqSFcgd-f0yIg1-QuoHOrvkzegXG5ye6H46GsyjoirW0cd11AmpNscpBb3EAYOOWDDqFhpwv006uWVPJ7c6S_Vic3wzPiId_Yw-Jh1dPLGj24_FoBO1DhMd0OatBt-Q14OeIr69vHfk-8OXl_uvxfO3x6f7z8-FqRuWirpvGmsEdJxJjtBYZLrGKv-GCdEIwLYysgcpodZQs76yhgshpLQNl6bpqjvy4dy7Bv9zw5jU7KLBadIL-i0qAbVgsmv_C3IQXb6uzCA_gyb4GAMOag1u1uGoGKiTJnVQJ03qpEkBV1lTDr2_tG_9jPZv5OIlA5_OAOZj_HIYVDQOF4PWBTRJWe_-1f8HpSCkMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20780069</pqid></control><display><type>article</type><title>The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yazdi, Misak ; Ahnmark, Andrea ; William-Olsson, Lena ; Snaith, Michael ; Turner, Nigel ; Osla, Fredrik ; Wedin, Marianne ; Asztély, Anna-Karin ; Elmgren, Anders ; Bohlooly-Y, Mohammad ; Schreyer, Sandra ; Lindén, Daniel</creator><creatorcontrib>Yazdi, Misak ; Ahnmark, Andrea ; William-Olsson, Lena ; Snaith, Michael ; Turner, Nigel ; Osla, Fredrik ; Wedin, Marianne ; Asztély, Anna-Karin ; Elmgren, Anders ; Bohlooly-Y, Mohammad ; Schreyer, Sandra ; Lindén, Daniel</creatorcontrib><description>Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the
in vivo importance of the dominating mitochondrial variant, GPAT1, a novel
GPAT1
−/−
mouse model was generated and studied. Female
GPAT1
−/−
mice had reduced body weight-gain and adiposity when fed chow diet compared with littermate wild-type controls. Furthermore,
GPAT1
−/−
females on chow diet showed decreased liver TAG content, plasma cholesterol and TAG levels and increased
ex vivo liver fatty acid oxidation and plasma ketone bodies. However, these beneficial effects were abolished and the glucose tolerance tended to be impaired when
GPAT1
−/−
females were fed a long-term high-fat diet (HFD). GPAT1-deficiency was not associated with altered whole body energy expenditure or respiratory exchange ratio. In addition, there were no changes in male
GPAT1
−/−
mice fed either diet except for increased plasma ketone bodies on chow diet, indicating a gender-specific phenotype. Thus, GPAT1-deficiency does not protect against HFD-induced obesity, hepatic steatosis or whole body glucose intolerance.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2008.02.156</identifier><identifier>PMID: 18339309</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adiposity ; Animals ; Cholesterol - blood ; Diet ; Dietary Fats - administration & dosage ; Dietary Fats - adverse effects ; Disease Models, Animal ; Energy expenditure ; Energy Metabolism ; Fatty acid oxidation ; Fatty Liver - etiology ; Fatty Liver - genetics ; Female ; Glucose - metabolism ; Glucose Intolerance - etiology ; Glucose Intolerance - genetics ; Glucose tolerance ; Glycerol-3-Phosphate O-Acyltransferase - genetics ; Glycerol-3-Phosphate O-Acyltransferase - physiology ; GPAT ; Hepatic steatosis ; Homeostasis ; Insulin sensitivity ; Ketone bodies ; Male ; Mice ; Mice, Mutant Strains ; Mitochondria - enzymology ; mtGPAT ; Obesity ; Obesity - etiology ; Obesity - genetics ; Triglycerides - analysis ; Triglycerides - metabolism ; Weight Gain</subject><ispartof>Biochemical and biophysical research communications, 2008-05, Vol.369 (4), p.1065-1070</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4b55dc7082192e05de1a4e3833177570e63c9b09904a041b3dc277799d529c583</citedby><cites>FETCH-LOGICAL-c451t-4b55dc7082192e05de1a4e3833177570e63c9b09904a041b3dc277799d529c583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2008.02.156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18339309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdi, Misak</creatorcontrib><creatorcontrib>Ahnmark, Andrea</creatorcontrib><creatorcontrib>William-Olsson, Lena</creatorcontrib><creatorcontrib>Snaith, Michael</creatorcontrib><creatorcontrib>Turner, Nigel</creatorcontrib><creatorcontrib>Osla, Fredrik</creatorcontrib><creatorcontrib>Wedin, Marianne</creatorcontrib><creatorcontrib>Asztély, Anna-Karin</creatorcontrib><creatorcontrib>Elmgren, Anders</creatorcontrib><creatorcontrib>Bohlooly-Y, Mohammad</creatorcontrib><creatorcontrib>Schreyer, Sandra</creatorcontrib><creatorcontrib>Lindén, Daniel</creatorcontrib><title>The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the
in vivo importance of the dominating mitochondrial variant, GPAT1, a novel
GPAT1
−/−
mouse model was generated and studied. Female
GPAT1
−/−
mice had reduced body weight-gain and adiposity when fed chow diet compared with littermate wild-type controls. Furthermore,
GPAT1
−/−
females on chow diet showed decreased liver TAG content, plasma cholesterol and TAG levels and increased
ex vivo liver fatty acid oxidation and plasma ketone bodies. However, these beneficial effects were abolished and the glucose tolerance tended to be impaired when
GPAT1
−/−
females were fed a long-term high-fat diet (HFD). GPAT1-deficiency was not associated with altered whole body energy expenditure or respiratory exchange ratio. In addition, there were no changes in male
GPAT1
−/−
mice fed either diet except for increased plasma ketone bodies on chow diet, indicating a gender-specific phenotype. Thus, GPAT1-deficiency does not protect against HFD-induced obesity, hepatic steatosis or whole body glucose intolerance.</description><subject>Adiposity</subject><subject>Animals</subject><subject>Cholesterol - blood</subject><subject>Diet</subject><subject>Dietary Fats - administration & dosage</subject><subject>Dietary Fats - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Energy expenditure</subject><subject>Energy Metabolism</subject><subject>Fatty acid oxidation</subject><subject>Fatty Liver - etiology</subject><subject>Fatty Liver - genetics</subject><subject>Female</subject><subject>Glucose - metabolism</subject><subject>Glucose Intolerance - etiology</subject><subject>Glucose Intolerance - genetics</subject><subject>Glucose tolerance</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - genetics</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - physiology</subject><subject>GPAT</subject><subject>Hepatic steatosis</subject><subject>Homeostasis</subject><subject>Insulin sensitivity</subject><subject>Ketone bodies</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mitochondria - enzymology</subject><subject>mtGPAT</subject><subject>Obesity</subject><subject>Obesity - etiology</subject><subject>Obesity - genetics</subject><subject>Triglycerides - analysis</subject><subject>Triglycerides - metabolism</subject><subject>Weight Gain</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURq0K1E4LL8ACecUu4dr5cSyxQRUtlSqxKRI7y7FvJh4lcbAdpHkBnhuPZiR2sPLinu-78j2EvGNQMmDtx0PZ98GUHKArgZesaa_IjoGEgjOoX5EdALQFl-zHDbmN8QDAWN3Ka3LDuqqSFcgd-f0yIg1-QuoHOrvkzegXG5ye6H46GsyjoirW0cd11AmpNscpBb3EAYOOWDDqFhpwv006uWVPJ7c6S_Vic3wzPiId_Yw-Jh1dPLGj24_FoBO1DhMd0OatBt-Q14OeIr69vHfk-8OXl_uvxfO3x6f7z8-FqRuWirpvGmsEdJxJjtBYZLrGKv-GCdEIwLYysgcpodZQs76yhgshpLQNl6bpqjvy4dy7Bv9zw5jU7KLBadIL-i0qAbVgsmv_C3IQXb6uzCA_gyb4GAMOag1u1uGoGKiTJnVQJ03qpEkBV1lTDr2_tG_9jPZv5OIlA5_OAOZj_HIYVDQOF4PWBTRJWe_-1f8HpSCkMQ</recordid><startdate>20080516</startdate><enddate>20080516</enddate><creator>Yazdi, Misak</creator><creator>Ahnmark, Andrea</creator><creator>William-Olsson, Lena</creator><creator>Snaith, Michael</creator><creator>Turner, Nigel</creator><creator>Osla, Fredrik</creator><creator>Wedin, Marianne</creator><creator>Asztély, Anna-Karin</creator><creator>Elmgren, Anders</creator><creator>Bohlooly-Y, Mohammad</creator><creator>Schreyer, Sandra</creator><creator>Lindén, Daniel</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080516</creationdate><title>The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice</title><author>Yazdi, Misak ; Ahnmark, Andrea ; William-Olsson, Lena ; Snaith, Michael ; Turner, Nigel ; Osla, Fredrik ; Wedin, Marianne ; Asztély, Anna-Karin ; Elmgren, Anders ; Bohlooly-Y, Mohammad ; Schreyer, Sandra ; Lindén, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4b55dc7082192e05de1a4e3833177570e63c9b09904a041b3dc277799d529c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adiposity</topic><topic>Animals</topic><topic>Cholesterol - blood</topic><topic>Diet</topic><topic>Dietary Fats - administration & dosage</topic><topic>Dietary Fats - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Energy expenditure</topic><topic>Energy Metabolism</topic><topic>Fatty acid oxidation</topic><topic>Fatty Liver - etiology</topic><topic>Fatty Liver - genetics</topic><topic>Female</topic><topic>Glucose - metabolism</topic><topic>Glucose Intolerance - etiology</topic><topic>Glucose Intolerance - genetics</topic><topic>Glucose tolerance</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - genetics</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - physiology</topic><topic>GPAT</topic><topic>Hepatic steatosis</topic><topic>Homeostasis</topic><topic>Insulin sensitivity</topic><topic>Ketone bodies</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mitochondria - enzymology</topic><topic>mtGPAT</topic><topic>Obesity</topic><topic>Obesity - etiology</topic><topic>Obesity - genetics</topic><topic>Triglycerides - analysis</topic><topic>Triglycerides - metabolism</topic><topic>Weight Gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdi, Misak</creatorcontrib><creatorcontrib>Ahnmark, Andrea</creatorcontrib><creatorcontrib>William-Olsson, Lena</creatorcontrib><creatorcontrib>Snaith, Michael</creatorcontrib><creatorcontrib>Turner, Nigel</creatorcontrib><creatorcontrib>Osla, Fredrik</creatorcontrib><creatorcontrib>Wedin, Marianne</creatorcontrib><creatorcontrib>Asztély, Anna-Karin</creatorcontrib><creatorcontrib>Elmgren, Anders</creatorcontrib><creatorcontrib>Bohlooly-Y, Mohammad</creatorcontrib><creatorcontrib>Schreyer, Sandra</creatorcontrib><creatorcontrib>Lindén, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdi, Misak</au><au>Ahnmark, Andrea</au><au>William-Olsson, Lena</au><au>Snaith, Michael</au><au>Turner, Nigel</au><au>Osla, Fredrik</au><au>Wedin, Marianne</au><au>Asztély, Anna-Karin</au><au>Elmgren, Anders</au><au>Bohlooly-Y, Mohammad</au><au>Schreyer, Sandra</au><au>Lindén, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2008-05-16</date><risdate>2008</risdate><volume>369</volume><issue>4</issue><spage>1065</spage><epage>1070</epage><pages>1065-1070</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Glycerol-3-phosphate acyltransferase (GPAT) is involved in triacylglycerol (TAG) and phospholipid synthesis, catalyzing the first committed step. In order to further investigate the
in vivo importance of the dominating mitochondrial variant, GPAT1, a novel
GPAT1
−/−
mouse model was generated and studied. Female
GPAT1
−/−
mice had reduced body weight-gain and adiposity when fed chow diet compared with littermate wild-type controls. Furthermore,
GPAT1
−/−
females on chow diet showed decreased liver TAG content, plasma cholesterol and TAG levels and increased
ex vivo liver fatty acid oxidation and plasma ketone bodies. However, these beneficial effects were abolished and the glucose tolerance tended to be impaired when
GPAT1
−/−
females were fed a long-term high-fat diet (HFD). GPAT1-deficiency was not associated with altered whole body energy expenditure or respiratory exchange ratio. In addition, there were no changes in male
GPAT1
−/−
mice fed either diet except for increased plasma ketone bodies on chow diet, indicating a gender-specific phenotype. Thus, GPAT1-deficiency does not protect against HFD-induced obesity, hepatic steatosis or whole body glucose intolerance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18339309</pmid><doi>10.1016/j.bbrc.2008.02.156</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2008-05, Vol.369 (4), p.1065-1070 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_70471986 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adiposity Animals Cholesterol - blood Diet Dietary Fats - administration & dosage Dietary Fats - adverse effects Disease Models, Animal Energy expenditure Energy Metabolism Fatty acid oxidation Fatty Liver - etiology Fatty Liver - genetics Female Glucose - metabolism Glucose Intolerance - etiology Glucose Intolerance - genetics Glucose tolerance Glycerol-3-Phosphate O-Acyltransferase - genetics Glycerol-3-Phosphate O-Acyltransferase - physiology GPAT Hepatic steatosis Homeostasis Insulin sensitivity Ketone bodies Male Mice Mice, Mutant Strains Mitochondria - enzymology mtGPAT Obesity Obesity - etiology Obesity - genetics Triglycerides - analysis Triglycerides - metabolism Weight Gain |
title | The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20mitochondrial%20glycerol-3-phosphate%20acyltransferase-1%20in%20regulating%20lipid%20and%20glucose%20homeostasis%20in%20high-fat%20diet%20fed%20mice&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yazdi,%20Misak&rft.date=2008-05-16&rft.volume=369&rft.issue=4&rft.spage=1065&rft.epage=1070&rft.pages=1065-1070&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2008.02.156&rft_dat=%3Cproquest_cross%3E70471986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20780069&rft_id=info:pmid/18339309&rft_els_id=S0006291X08004336&rfr_iscdi=true |