Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations

Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory medicine 2008-05, Vol.102 (5), p.720-725
Hauptverfasser: Czebe, Krisztina, Barta, Imre, Antus, Balázs, Valyon, Márta, Horváth, Ildikó, Kullmann, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 725
container_issue 5
container_start_page 720
container_title Respiratory medicine
container_volume 102
creator Czebe, Krisztina
Barta, Imre
Antus, Balázs
Valyon, Márta
Horváth, Ildikó
Kullmann, Tamás
description Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p
doi_str_mv 10.1016/j.rmed.2007.12.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70467121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0954611107005124</els_id><sourcerecordid>2745008761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxS0EokvhC3BAkRCcSJhx7PyRKqSqAlqpEgfgbDnOhHqbOFvbQfTUr47DLkXqgZMP_r3n53nD2EuEAgGr99vCT9QXHKAukBeA5SO2QVnyvIRKPGYbaKXIK0Q8Ys9C2AJAKwQ8ZUfYcNEiVBt2d-GGcSFnKJuHzMyuJxes-5HRzWJ3E7mYaddnkaYdeR0XnziX0a8rPVKfdZ50vPor05Gy3fm7LM5Rj9nOz5Gs-yMfabmeo7fkaIVNsk1mdnbhOXsy6DHQi8N5zL5_-vjt7Dy__PL54uz0MjcSMea17IQpSUCnezlUKAw1kro0htZI3lZCtxwl73Ujy6oSfKjBVD3qppaDFJzKY_Z275ti3SwUoppsMDSO2tG8BFWDqGrkmMDXD8DtvHiXsimEUoKosVkpvqeMn0PwNKidt5P2twlSazlqq9Zy1FqOQq5SOUn06mC9dOvdveTQRgLeHAAdjB4Hr52x4Z7jUGIDZZu4kz1HaWI_LXkVjF077K0nE1U_2__n-PBAbkbrbHrxmm4p_PuvCkmgvq5rtG4R1AASuSh_A6Fywvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035047181</pqid></control><display><type>article</type><title>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Czebe, Krisztina ; Barta, Imre ; Antus, Balázs ; Valyon, Márta ; Horváth, Ildikó ; Kullmann, Tamás</creator><creatorcontrib>Czebe, Krisztina ; Barta, Imre ; Antus, Balázs ; Valyon, Márta ; Horváth, Ildikó ; Kullmann, Tamás</creatorcontrib><description>Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p &lt;0.05 and 6.10±0.26, p &lt;0.001) and contained more protein (3.89±2.03 vs. 2.65±1.98, n.s. and 1.88±1.99 μg/ml, p &lt;0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99±0.20 at −20 °C and 5.82±0.07 at −70 °C, p &lt;0.05) but not protein content. Leukotriene B4 was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Conclusion Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.</description><identifier>ISSN: 0954-6111</identifier><identifier>EISSN: 1532-3064</identifier><identifier>DOI: 10.1016/j.rmed.2007.12.013</identifier><identifier>PMID: 18249106</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Asthma - diagnosis ; Biological and medical sciences ; Biomarkers ; Biomarkers - analysis ; Breath Tests - instrumentation ; Breath Tests - methods ; Bronchoconstriction - physiology ; Cooling ; Cysteine - analysis ; Dilution ; EBC ; Equipment Design ; Exhalation ; Exhaled breath condensate ; Female ; Humans ; Hydrogen-Ion Concentration ; Immunoassay ; Influence ; Leukotriene ; Leukotriene B4 - analysis ; Leukotrienes - analysis ; Male ; Medical sciences ; Methods ; Middle Aged ; Pneumology ; Proteins ; Proteins - analysis ; Pulmonary/Respiratory ; Refrigeration ; Statistics, Nonparametric ; Temperature ; Total protein</subject><ispartof>Respiratory medicine, 2008-05, Vol.102 (5), p.720-725</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</citedby><cites>FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0954611107005124$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20318039$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czebe, Krisztina</creatorcontrib><creatorcontrib>Barta, Imre</creatorcontrib><creatorcontrib>Antus, Balázs</creatorcontrib><creatorcontrib>Valyon, Márta</creatorcontrib><creatorcontrib>Horváth, Ildikó</creatorcontrib><creatorcontrib>Kullmann, Tamás</creatorcontrib><title>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</title><title>Respiratory medicine</title><addtitle>Respir Med</addtitle><description>Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p &lt;0.05 and 6.10±0.26, p &lt;0.001) and contained more protein (3.89±2.03 vs. 2.65±1.98, n.s. and 1.88±1.99 μg/ml, p &lt;0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99±0.20 at −20 °C and 5.82±0.07 at −70 °C, p &lt;0.05) but not protein content. Leukotriene B4 was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Conclusion Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.</description><subject>Adult</subject><subject>Asthma - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Breath Tests - instrumentation</subject><subject>Breath Tests - methods</subject><subject>Bronchoconstriction - physiology</subject><subject>Cooling</subject><subject>Cysteine - analysis</subject><subject>Dilution</subject><subject>EBC</subject><subject>Equipment Design</subject><subject>Exhalation</subject><subject>Exhaled breath condensate</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immunoassay</subject><subject>Influence</subject><subject>Leukotriene</subject><subject>Leukotriene B4 - analysis</subject><subject>Leukotrienes - analysis</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Pneumology</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Pulmonary/Respiratory</subject><subject>Refrigeration</subject><subject>Statistics, Nonparametric</subject><subject>Temperature</subject><subject>Total protein</subject><issn>0954-6111</issn><issn>1532-3064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk9v1DAQxS0EokvhC3BAkRCcSJhx7PyRKqSqAlqpEgfgbDnOhHqbOFvbQfTUr47DLkXqgZMP_r3n53nD2EuEAgGr99vCT9QXHKAukBeA5SO2QVnyvIRKPGYbaKXIK0Q8Ys9C2AJAKwQ8ZUfYcNEiVBt2d-GGcSFnKJuHzMyuJxes-5HRzWJ3E7mYaddnkaYdeR0XnziX0a8rPVKfdZ50vPor05Gy3fm7LM5Rj9nOz5Gs-yMfabmeo7fkaIVNsk1mdnbhOXsy6DHQi8N5zL5_-vjt7Dy__PL54uz0MjcSMea17IQpSUCnezlUKAw1kro0htZI3lZCtxwl73Ujy6oSfKjBVD3qppaDFJzKY_Z275ti3SwUoppsMDSO2tG8BFWDqGrkmMDXD8DtvHiXsimEUoKosVkpvqeMn0PwNKidt5P2twlSazlqq9Zy1FqOQq5SOUn06mC9dOvdveTQRgLeHAAdjB4Hr52x4Z7jUGIDZZu4kz1HaWI_LXkVjF077K0nE1U_2__n-PBAbkbrbHrxmm4p_PuvCkmgvq5rtG4R1AASuSh_A6Fywvw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Czebe, Krisztina</creator><creator>Barta, Imre</creator><creator>Antus, Balázs</creator><creator>Valyon, Márta</creator><creator>Horváth, Ildikó</creator><creator>Kullmann, Tamás</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>ASE</scope><scope>FPQ</scope><scope>H94</scope><scope>K6X</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20080501</creationdate><title>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</title><author>Czebe, Krisztina ; Barta, Imre ; Antus, Balázs ; Valyon, Márta ; Horváth, Ildikó ; Kullmann, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Asthma - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Breath Tests - instrumentation</topic><topic>Breath Tests - methods</topic><topic>Bronchoconstriction - physiology</topic><topic>Cooling</topic><topic>Cysteine - analysis</topic><topic>Dilution</topic><topic>EBC</topic><topic>Equipment Design</topic><topic>Exhalation</topic><topic>Exhaled breath condensate</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immunoassay</topic><topic>Influence</topic><topic>Leukotriene</topic><topic>Leukotriene B4 - analysis</topic><topic>Leukotrienes - analysis</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Pneumology</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Pulmonary/Respiratory</topic><topic>Refrigeration</topic><topic>Statistics, Nonparametric</topic><topic>Temperature</topic><topic>Total protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czebe, Krisztina</creatorcontrib><creatorcontrib>Barta, Imre</creatorcontrib><creatorcontrib>Antus, Balázs</creatorcontrib><creatorcontrib>Valyon, Márta</creatorcontrib><creatorcontrib>Horváth, Ildikó</creatorcontrib><creatorcontrib>Kullmann, Tamás</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>British Nursing Index</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Respiratory medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czebe, Krisztina</au><au>Barta, Imre</au><au>Antus, Balázs</au><au>Valyon, Márta</au><au>Horváth, Ildikó</au><au>Kullmann, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</atitle><jtitle>Respiratory medicine</jtitle><addtitle>Respir Med</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>102</volume><issue>5</issue><spage>720</spage><epage>725</epage><pages>720-725</pages><issn>0954-6111</issn><eissn>1532-3064</eissn><abstract>Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p &lt;0.05 and 6.10±0.26, p &lt;0.001) and contained more protein (3.89±2.03 vs. 2.65±1.98, n.s. and 1.88±1.99 μg/ml, p &lt;0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99±0.20 at −20 °C and 5.82±0.07 at −70 °C, p &lt;0.05) but not protein content. Leukotriene B4 was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Conclusion Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18249106</pmid><doi>10.1016/j.rmed.2007.12.013</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-6111
ispartof Respiratory medicine, 2008-05, Vol.102 (5), p.720-725
issn 0954-6111
1532-3064
language eng
recordid cdi_proquest_miscellaneous_70467121
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Adult
Asthma - diagnosis
Biological and medical sciences
Biomarkers
Biomarkers - analysis
Breath Tests - instrumentation
Breath Tests - methods
Bronchoconstriction - physiology
Cooling
Cysteine - analysis
Dilution
EBC
Equipment Design
Exhalation
Exhaled breath condensate
Female
Humans
Hydrogen-Ion Concentration
Immunoassay
Influence
Leukotriene
Leukotriene B4 - analysis
Leukotrienes - analysis
Male
Medical sciences
Methods
Middle Aged
Pneumology
Proteins
Proteins - analysis
Pulmonary/Respiratory
Refrigeration
Statistics, Nonparametric
Temperature
Total protein
title Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20condensing%20equipment%20and%20temperature%20on%20exhaled%20breath%20condensate%20pH,%20total%20protein%20and%20leukotriene%20concentrations&rft.jtitle=Respiratory%20medicine&rft.au=Czebe,%20Krisztina&rft.date=2008-05-01&rft.volume=102&rft.issue=5&rft.spage=720&rft.epage=725&rft.pages=720-725&rft.issn=0954-6111&rft.eissn=1532-3064&rft_id=info:doi/10.1016/j.rmed.2007.12.013&rft_dat=%3Cproquest_cross%3E2745008761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035047181&rft_id=info:pmid/18249106&rft_els_id=S0954611107005124&rfr_iscdi=true