Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations
Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of...
Gespeichert in:
Veröffentlicht in: | Respiratory medicine 2008-05, Vol.102 (5), p.720-725 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 725 |
---|---|
container_issue | 5 |
container_start_page | 720 |
container_title | Respiratory medicine |
container_volume | 102 |
creator | Czebe, Krisztina Barta, Imre Antus, Balázs Valyon, Márta Horváth, Ildikó Kullmann, Tamás |
description | Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p |
doi_str_mv | 10.1016/j.rmed.2007.12.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70467121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0954611107005124</els_id><sourcerecordid>2745008761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxS0EokvhC3BAkRCcSJhx7PyRKqSqAlqpEgfgbDnOhHqbOFvbQfTUr47DLkXqgZMP_r3n53nD2EuEAgGr99vCT9QXHKAukBeA5SO2QVnyvIRKPGYbaKXIK0Q8Ys9C2AJAKwQ8ZUfYcNEiVBt2d-GGcSFnKJuHzMyuJxes-5HRzWJ3E7mYaddnkaYdeR0XnziX0a8rPVKfdZ50vPor05Gy3fm7LM5Rj9nOz5Gs-yMfabmeo7fkaIVNsk1mdnbhOXsy6DHQi8N5zL5_-vjt7Dy__PL54uz0MjcSMea17IQpSUCnezlUKAw1kro0htZI3lZCtxwl73Ujy6oSfKjBVD3qppaDFJzKY_Z275ti3SwUoppsMDSO2tG8BFWDqGrkmMDXD8DtvHiXsimEUoKosVkpvqeMn0PwNKidt5P2twlSazlqq9Zy1FqOQq5SOUn06mC9dOvdveTQRgLeHAAdjB4Hr52x4Z7jUGIDZZu4kz1HaWI_LXkVjF077K0nE1U_2__n-PBAbkbrbHrxmm4p_PuvCkmgvq5rtG4R1AASuSh_A6Fywvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035047181</pqid></control><display><type>article</type><title>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Czebe, Krisztina ; Barta, Imre ; Antus, Balázs ; Valyon, Márta ; Horváth, Ildikó ; Kullmann, Tamás</creator><creatorcontrib>Czebe, Krisztina ; Barta, Imre ; Antus, Balázs ; Valyon, Márta ; Horváth, Ildikó ; Kullmann, Tamás</creatorcontrib><description>Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p <0.05 and 6.10±0.26, p <0.001) and contained more protein (3.89±2.03 vs. 2.65±1.98, n.s. and 1.88±1.99 μg/ml, p <0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99±0.20 at −20 °C and 5.82±0.07 at −70 °C, p <0.05) but not protein content. Leukotriene B4 was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Conclusion Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.</description><identifier>ISSN: 0954-6111</identifier><identifier>EISSN: 1532-3064</identifier><identifier>DOI: 10.1016/j.rmed.2007.12.013</identifier><identifier>PMID: 18249106</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Asthma - diagnosis ; Biological and medical sciences ; Biomarkers ; Biomarkers - analysis ; Breath Tests - instrumentation ; Breath Tests - methods ; Bronchoconstriction - physiology ; Cooling ; Cysteine - analysis ; Dilution ; EBC ; Equipment Design ; Exhalation ; Exhaled breath condensate ; Female ; Humans ; Hydrogen-Ion Concentration ; Immunoassay ; Influence ; Leukotriene ; Leukotriene B4 - analysis ; Leukotrienes - analysis ; Male ; Medical sciences ; Methods ; Middle Aged ; Pneumology ; Proteins ; Proteins - analysis ; Pulmonary/Respiratory ; Refrigeration ; Statistics, Nonparametric ; Temperature ; Total protein</subject><ispartof>Respiratory medicine, 2008-05, Vol.102 (5), p.720-725</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</citedby><cites>FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0954611107005124$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20318039$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czebe, Krisztina</creatorcontrib><creatorcontrib>Barta, Imre</creatorcontrib><creatorcontrib>Antus, Balázs</creatorcontrib><creatorcontrib>Valyon, Márta</creatorcontrib><creatorcontrib>Horváth, Ildikó</creatorcontrib><creatorcontrib>Kullmann, Tamás</creatorcontrib><title>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</title><title>Respiratory medicine</title><addtitle>Respir Med</addtitle><description>Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p <0.05 and 6.10±0.26, p <0.001) and contained more protein (3.89±2.03 vs. 2.65±1.98, n.s. and 1.88±1.99 μg/ml, p <0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99±0.20 at −20 °C and 5.82±0.07 at −70 °C, p <0.05) but not protein content. Leukotriene B4 was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Conclusion Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.</description><subject>Adult</subject><subject>Asthma - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Breath Tests - instrumentation</subject><subject>Breath Tests - methods</subject><subject>Bronchoconstriction - physiology</subject><subject>Cooling</subject><subject>Cysteine - analysis</subject><subject>Dilution</subject><subject>EBC</subject><subject>Equipment Design</subject><subject>Exhalation</subject><subject>Exhaled breath condensate</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immunoassay</subject><subject>Influence</subject><subject>Leukotriene</subject><subject>Leukotriene B4 - analysis</subject><subject>Leukotrienes - analysis</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Pneumology</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Pulmonary/Respiratory</subject><subject>Refrigeration</subject><subject>Statistics, Nonparametric</subject><subject>Temperature</subject><subject>Total protein</subject><issn>0954-6111</issn><issn>1532-3064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk9v1DAQxS0EokvhC3BAkRCcSJhx7PyRKqSqAlqpEgfgbDnOhHqbOFvbQfTUr47DLkXqgZMP_r3n53nD2EuEAgGr99vCT9QXHKAukBeA5SO2QVnyvIRKPGYbaKXIK0Q8Ys9C2AJAKwQ8ZUfYcNEiVBt2d-GGcSFnKJuHzMyuJxes-5HRzWJ3E7mYaddnkaYdeR0XnziX0a8rPVKfdZ50vPor05Gy3fm7LM5Rj9nOz5Gs-yMfabmeo7fkaIVNsk1mdnbhOXsy6DHQi8N5zL5_-vjt7Dy__PL54uz0MjcSMea17IQpSUCnezlUKAw1kro0htZI3lZCtxwl73Ujy6oSfKjBVD3qppaDFJzKY_Z275ti3SwUoppsMDSO2tG8BFWDqGrkmMDXD8DtvHiXsimEUoKosVkpvqeMn0PwNKidt5P2twlSazlqq9Zy1FqOQq5SOUn06mC9dOvdveTQRgLeHAAdjB4Hr52x4Z7jUGIDZZu4kz1HaWI_LXkVjF077K0nE1U_2__n-PBAbkbrbHrxmm4p_PuvCkmgvq5rtG4R1AASuSh_A6Fywvw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Czebe, Krisztina</creator><creator>Barta, Imre</creator><creator>Antus, Balázs</creator><creator>Valyon, Márta</creator><creator>Horváth, Ildikó</creator><creator>Kullmann, Tamás</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>ASE</scope><scope>FPQ</scope><scope>H94</scope><scope>K6X</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20080501</creationdate><title>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</title><author>Czebe, Krisztina ; Barta, Imre ; Antus, Balázs ; Valyon, Márta ; Horváth, Ildikó ; Kullmann, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-75b4c3e40bad5f614ce85eb1019c52964a92152da8536642f70c6d1a875f542e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Asthma - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Breath Tests - instrumentation</topic><topic>Breath Tests - methods</topic><topic>Bronchoconstriction - physiology</topic><topic>Cooling</topic><topic>Cysteine - analysis</topic><topic>Dilution</topic><topic>EBC</topic><topic>Equipment Design</topic><topic>Exhalation</topic><topic>Exhaled breath condensate</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immunoassay</topic><topic>Influence</topic><topic>Leukotriene</topic><topic>Leukotriene B4 - analysis</topic><topic>Leukotrienes - analysis</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Pneumology</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Pulmonary/Respiratory</topic><topic>Refrigeration</topic><topic>Statistics, Nonparametric</topic><topic>Temperature</topic><topic>Total protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czebe, Krisztina</creatorcontrib><creatorcontrib>Barta, Imre</creatorcontrib><creatorcontrib>Antus, Balázs</creatorcontrib><creatorcontrib>Valyon, Márta</creatorcontrib><creatorcontrib>Horváth, Ildikó</creatorcontrib><creatorcontrib>Kullmann, Tamás</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>British Nursing Index</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Respiratory medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czebe, Krisztina</au><au>Barta, Imre</au><au>Antus, Balázs</au><au>Valyon, Márta</au><au>Horváth, Ildikó</au><au>Kullmann, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations</atitle><jtitle>Respiratory medicine</jtitle><addtitle>Respir Med</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>102</volume><issue>5</issue><spage>720</spage><epage>725</epage><pages>720-725</pages><issn>0954-6111</issn><eissn>1532-3064</eissn><abstract>Summary Background Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Methods Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to −20 or −70 °C. Condensate pH at standardised CO2 level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Results Breath condensates collected using EcoScreen were more alkaline (6.45±0.20 vs. 6.19±0.23, p <0.05 and 6.10±0.26, p <0.001) and contained more protein (3.89±2.03 vs. 2.65±1.98, n.s. and 1.88±1.99 μg/ml, p <0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99±0.20 at −20 °C and 5.82±0.07 at −70 °C, p <0.05) but not protein content. Leukotriene B4 was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Conclusion Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18249106</pmid><doi>10.1016/j.rmed.2007.12.013</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-6111 |
ispartof | Respiratory medicine, 2008-05, Vol.102 (5), p.720-725 |
issn | 0954-6111 1532-3064 |
language | eng |
recordid | cdi_proquest_miscellaneous_70467121 |
source | MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adult Asthma - diagnosis Biological and medical sciences Biomarkers Biomarkers - analysis Breath Tests - instrumentation Breath Tests - methods Bronchoconstriction - physiology Cooling Cysteine - analysis Dilution EBC Equipment Design Exhalation Exhaled breath condensate Female Humans Hydrogen-Ion Concentration Immunoassay Influence Leukotriene Leukotriene B4 - analysis Leukotrienes - analysis Male Medical sciences Methods Middle Aged Pneumology Proteins Proteins - analysis Pulmonary/Respiratory Refrigeration Statistics, Nonparametric Temperature Total protein |
title | Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20condensing%20equipment%20and%20temperature%20on%20exhaled%20breath%20condensate%20pH,%20total%20protein%20and%20leukotriene%20concentrations&rft.jtitle=Respiratory%20medicine&rft.au=Czebe,%20Krisztina&rft.date=2008-05-01&rft.volume=102&rft.issue=5&rft.spage=720&rft.epage=725&rft.pages=720-725&rft.issn=0954-6111&rft.eissn=1532-3064&rft_id=info:doi/10.1016/j.rmed.2007.12.013&rft_dat=%3Cproquest_cross%3E2745008761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035047181&rft_id=info:pmid/18249106&rft_els_id=S0954611107005124&rfr_iscdi=true |