Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines

Large-margin methods, such as support vector machines (SVMs), have been very successful in classification problems. Recently, maximum margin discriminant analysis (MMDA) was proposed that extends the large-margin idea to feature extraction. It often outperforms traditional methods such as kernel pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-04, Vol.19 (4), p.610-624
Hauptverfasser: Wai-Hung Tsang, I., Kocsor, A., Kwok, J.T.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 4
container_start_page 610
container_title IEEE transaction on neural networks and learning systems
container_volume 19
creator Wai-Hung Tsang, I.
Kocsor, A.
Kwok, J.T.-Y.
description Large-margin methods, such as support vector machines (SVMs), have been very successful in classification problems. Recently, maximum margin discriminant analysis (MMDA) was proposed that extends the large-margin idea to feature extraction. It often outperforms traditional methods such as kernel principal component analysis (KPCA) and kernel Fisher discriminant analysis (KFD). However, as in the SVM, its time complexity is cubic in the number of training points m, and is thus computationally inefficient on massive data sets. In this paper, we propose an (1 + isin) 2 -approximation algorithm for obtaining the MMDA features by extending the core vector machine. The resultant time complexity is only linear in m, while its space complexity is independent of m. Extensive comparisons with the original MMDA, KPCA, and KFD on a number of large data sets show that the proposed feature extractor can improve classification accuracy, and is also faster than these kernel-based methods by over an order of magnitude.
doi_str_mv 10.1109/TNN.2007.911746
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_70464979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4443875</ieee_id><sourcerecordid>875036564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7cdf6e29cf03f9399daadcd36995260e747d98fed155382286d4259e6e3e2eba3</originalsourceid><addsrcrecordid>eNp90btrHDEQB2ARYuJHUqcIhCUQu9rz6LHSqjQXv_DZKWKnFbJ29iKzD0e6Bfu_9xx32JAilQT6NMzMj7HPHGacgz2-vbmZCQAzs5wbpd-xPW4VLwGsfE93UFVphTC7bD_nBwCuKtAf2C6vpQUJ9R67Wvi0xPJX8B0W1_4p9lNPZ1rGofgRc0ixj4MfVsXJ4LvnHHNxl-OwLOZjwuI3htWYiIc_ccD8ke20vsv4aXsesLuz09v5Rbn4eX45P1mUQYFalSY0rUZhQwuytdLaxvsmNFJbWwkNaJRpbN1iw6tK1kLUulGisqhRosB7Lw_Y0abuYxr_TphXrqdOsev8gOOUXW0qkLrSiuThf6UBpZU1luC3f-DDOCUaOTvLqQXamyR0vEEhjTknbN0jrcenZ8fBreNwFIdbx-E2cdCPr9uy032PzZvf7p_A9y3wmSJokx9CzK9OwHp8DeS-bFxExNdnpZSkYeULysKZZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912284503</pqid></control><display><type>article</type><title>Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Wai-Hung Tsang, I. ; Kocsor, A. ; Kwok, J.T.-Y.</creator><creatorcontrib>Wai-Hung Tsang, I. ; Kocsor, A. ; Kwok, J.T.-Y.</creatorcontrib><description>Large-margin methods, such as support vector machines (SVMs), have been very successful in classification problems. Recently, maximum margin discriminant analysis (MMDA) was proposed that extends the large-margin idea to feature extraction. It often outperforms traditional methods such as kernel principal component analysis (KPCA) and kernel Fisher discriminant analysis (KFD). However, as in the SVM, its time complexity is cubic in the number of training points m, and is thus computationally inefficient on massive data sets. In this paper, we propose an (1 + isin) 2 -approximation algorithm for obtaining the MMDA features by extending the core vector machine. The resultant time complexity is only linear in m, while its space complexity is independent of m. Extensive comparisons with the original MMDA, KPCA, and KFD on a number of large data sets show that the proposed feature extractor can improve classification accuracy, and is also faster than these kernel-based methods by over an order of magnitude.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2007.911746</identifier><identifier>PMID: 18390308</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial intelligence ; Classification ; Complexity ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; core vector machines ; Councils ; Data mining ; Data processing. List processing. Character string processing ; Discriminant Analysis ; Exact sciences and technology ; Feature extraction ; Humans ; Information analysis ; Kernel ; Kernels ; Large-scale systems ; Mathematical analysis ; Memory organisation. Data processing ; Models, Statistical ; Neural Networks (Computer) ; Principal Component Analysis ; Scalability ; Signal Processing, Computer-Assisted ; Software ; Studies ; Support vector machine classification ; Support vector machines ; support vector machines (SVMs) ; Theoretical computing ; Time Factors ; Vectors (mathematics)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2008-04, Vol.19 (4), p.610-624</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7cdf6e29cf03f9399daadcd36995260e747d98fed155382286d4259e6e3e2eba3</citedby><cites>FETCH-LOGICAL-c404t-7cdf6e29cf03f9399daadcd36995260e747d98fed155382286d4259e6e3e2eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4443875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4443875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20228660$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18390308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wai-Hung Tsang, I.</creatorcontrib><creatorcontrib>Kocsor, A.</creatorcontrib><creatorcontrib>Kwok, J.T.-Y.</creatorcontrib><title>Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Large-margin methods, such as support vector machines (SVMs), have been very successful in classification problems. Recently, maximum margin discriminant analysis (MMDA) was proposed that extends the large-margin idea to feature extraction. It often outperforms traditional methods such as kernel principal component analysis (KPCA) and kernel Fisher discriminant analysis (KFD). However, as in the SVM, its time complexity is cubic in the number of training points m, and is thus computationally inefficient on massive data sets. In this paper, we propose an (1 + isin) 2 -approximation algorithm for obtaining the MMDA features by extending the core vector machine. The resultant time complexity is only linear in m, while its space complexity is independent of m. Extensive comparisons with the original MMDA, KPCA, and KFD on a number of large data sets show that the proposed feature extractor can improve classification accuracy, and is also faster than these kernel-based methods by over an order of magnitude.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Complexity</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>core vector machines</subject><subject>Councils</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Discriminant Analysis</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Information analysis</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Large-scale systems</subject><subject>Mathematical analysis</subject><subject>Memory organisation. Data processing</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Principal Component Analysis</subject><subject>Scalability</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Studies</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>Theoretical computing</subject><subject>Time Factors</subject><subject>Vectors (mathematics)</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90btrHDEQB2ARYuJHUqcIhCUQu9rz6LHSqjQXv_DZKWKnFbJ29iKzD0e6Bfu_9xx32JAilQT6NMzMj7HPHGacgz2-vbmZCQAzs5wbpd-xPW4VLwGsfE93UFVphTC7bD_nBwCuKtAf2C6vpQUJ9R67Wvi0xPJX8B0W1_4p9lNPZ1rGofgRc0ixj4MfVsXJ4LvnHHNxl-OwLOZjwuI3htWYiIc_ccD8ke20vsv4aXsesLuz09v5Rbn4eX45P1mUQYFalSY0rUZhQwuytdLaxvsmNFJbWwkNaJRpbN1iw6tK1kLUulGisqhRosB7Lw_Y0abuYxr_TphXrqdOsev8gOOUXW0qkLrSiuThf6UBpZU1luC3f-DDOCUaOTvLqQXamyR0vEEhjTknbN0jrcenZ8fBreNwFIdbx-E2cdCPr9uy032PzZvf7p_A9y3wmSJokx9CzK9OwHp8DeS-bFxExNdnpZSkYeULysKZZA</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Wai-Hung Tsang, I.</creator><creator>Kocsor, A.</creator><creator>Kwok, J.T.-Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines</title><author>Wai-Hung Tsang, I. ; Kocsor, A. ; Kwok, J.T.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7cdf6e29cf03f9399daadcd36995260e747d98fed155382286d4259e6e3e2eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Complexity</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>core vector machines</topic><topic>Councils</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Discriminant Analysis</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Information analysis</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Large-scale systems</topic><topic>Mathematical analysis</topic><topic>Memory organisation. Data processing</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Principal Component Analysis</topic><topic>Scalability</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Studies</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>Theoretical computing</topic><topic>Time Factors</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wai-Hung Tsang, I.</creatorcontrib><creatorcontrib>Kocsor, A.</creatorcontrib><creatorcontrib>Kwok, J.T.-Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wai-Hung Tsang, I.</au><au>Kocsor, A.</au><au>Kwok, J.T.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>19</volume><issue>4</issue><spage>610</spage><epage>624</epage><pages>610-624</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>Large-margin methods, such as support vector machines (SVMs), have been very successful in classification problems. Recently, maximum margin discriminant analysis (MMDA) was proposed that extends the large-margin idea to feature extraction. It often outperforms traditional methods such as kernel principal component analysis (KPCA) and kernel Fisher discriminant analysis (KFD). However, as in the SVM, its time complexity is cubic in the number of training points m, and is thus computationally inefficient on massive data sets. In this paper, we propose an (1 + isin) 2 -approximation algorithm for obtaining the MMDA features by extending the core vector machine. The resultant time complexity is only linear in m, while its space complexity is independent of m. Extensive comparisons with the original MMDA, KPCA, and KFD on a number of large data sets show that the proposed feature extractor can improve classification accuracy, and is also faster than these kernel-based methods by over an order of magnitude.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18390308</pmid><doi>10.1109/TNN.2007.911746</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2008-04, Vol.19 (4), p.610-624
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_70464979
source IEEE Electronic Library (IEL)
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Classification
Complexity
Computer science
control theory
systems
Computer Simulation
Connectionism. Neural networks
core vector machines
Councils
Data mining
Data processing. List processing. Character string processing
Discriminant Analysis
Exact sciences and technology
Feature extraction
Humans
Information analysis
Kernel
Kernels
Large-scale systems
Mathematical analysis
Memory organisation. Data processing
Models, Statistical
Neural Networks (Computer)
Principal Component Analysis
Scalability
Signal Processing, Computer-Assisted
Software
Studies
Support vector machine classification
Support vector machines
support vector machines (SVMs)
Theoretical computing
Time Factors
Vectors (mathematics)
title Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Maximum%20Margin%20Discriminant%20Analysis%20Using%20Core%20Vector%20Machines&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wai-Hung%20Tsang,%20I.&rft.date=2008-04-01&rft.volume=19&rft.issue=4&rft.spage=610&rft.epage=624&rft.pages=610-624&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2007.911746&rft_dat=%3Cproquest_RIE%3E875036564%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912284503&rft_id=info:pmid/18390308&rft_ieee_id=4443875&rfr_iscdi=true