A novel, tissue occlusive poly(ethylene glycol) hydrogel material

The use of guided bone regeneration (GBR) techniques requires new materials meeting the needs of clinical application. Design criteria for GBR devices are biocompatibility, tissue occlusion, space provision, and clinical manageability. This study evaluates a novel biodegradable poly (ethylene glycol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2008-05, Vol.85A (2), p.285-292
Hauptverfasser: Wechsler, Sandra, Fehr, Daniel, Molenberg, Aart, Raeber, George, Schense, Jason C., Weber, Franz E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 2
container_start_page 285
container_title Journal of biomedical materials research. Part A
container_volume 85A
creator Wechsler, Sandra
Fehr, Daniel
Molenberg, Aart
Raeber, George
Schense, Jason C.
Weber, Franz E.
description The use of guided bone regeneration (GBR) techniques requires new materials meeting the needs of clinical application. Design criteria for GBR devices are biocompatibility, tissue occlusion, space provision, and clinical manageability. This study evaluates a novel biodegradable poly (ethylene glycol) (PEG) based material as tissue occlusive membrane. A subcutaneous implant model in rats was developed to test the barrier function of the PEG hydrogels over time. Fourteen rats received three membrane implants and two positive controls each. Explants were collected over a period of 7 months. Histological analysis revealed that for at least 4 months cellular infiltration in the membrane explants was lower than 1% of that of the positive controls. Therefore, the PEG based hydrogel can be regarded as tissue occlusive during this period of time. A barrier function seems to be maintained for up to 6 months. In vitro degradation studies performed with the same PEG constructs confirm the in vivo result. In conclusion, our results indicate that this novel PEG‐based material has potential for use as a GBR barrier membrane. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008
doi_str_mv 10.1002/jbm.a.31477
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70462445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70462445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4357-5da3e780525d446fb4601c2d3a385352a852c9aac8a098dc850bb9ca930423893</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EYj9xRzkhEKR4j30sFVvFIiQQEhfLcaYQcJoSJ4X8PYEWuMFp5vDmjfQQ2iK4RzCmh89p0bM9RniSLKBVIgSNuZZi8XPnOmZUyxW0FsJzB0ss6DJaIYlUimq2ivr9aFxOwR9EdR5CA1HpnG9CPoVoUvp2F-qn1sMYokffutLvRU9tVpWP4KPC1lDl1m-gpZH1ATbncx3dnRzfDs7ii-vT80H_InaciSQWmWWQqO6_yDiXo5RLTBzNmGVKMEGtEtRpa52yWKvMKYHTVDurGeaUKc3W0c7MO6nK1wZCbYo8OPDejqFsgkkwl5Rz8S_IqOCEctKB-zPQVWUIFYzMpMoLW7WGYPOZ1nRpjTVfaTt6e65t0gKyX3besgPIDHjLPbR_uczw6PJbGs9u8lDD-8-NrV6MTFgizP3VqcFDeftwMhiaG_YBA3CR6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32541241</pqid></control><display><type>article</type><title>A novel, tissue occlusive poly(ethylene glycol) hydrogel material</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wechsler, Sandra ; Fehr, Daniel ; Molenberg, Aart ; Raeber, George ; Schense, Jason C. ; Weber, Franz E.</creator><creatorcontrib>Wechsler, Sandra ; Fehr, Daniel ; Molenberg, Aart ; Raeber, George ; Schense, Jason C. ; Weber, Franz E.</creatorcontrib><description>The use of guided bone regeneration (GBR) techniques requires new materials meeting the needs of clinical application. Design criteria for GBR devices are biocompatibility, tissue occlusion, space provision, and clinical manageability. This study evaluates a novel biodegradable poly (ethylene glycol) (PEG) based material as tissue occlusive membrane. A subcutaneous implant model in rats was developed to test the barrier function of the PEG hydrogels over time. Fourteen rats received three membrane implants and two positive controls each. Explants were collected over a period of 7 months. Histological analysis revealed that for at least 4 months cellular infiltration in the membrane explants was lower than 1% of that of the positive controls. Therefore, the PEG based hydrogel can be regarded as tissue occlusive during this period of time. A barrier function seems to be maintained for up to 6 months. In vitro degradation studies performed with the same PEG constructs confirm the in vivo result. In conclusion, our results indicate that this novel PEG‐based material has potential for use as a GBR barrier membrane. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31477</identifier><identifier>PMID: 17688293</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>animal model ; Animals ; Bone Regeneration ; dental implant ; Female ; Guided Tissue Regeneration - methods ; hydrogel ; Hydrogels ; Materials Testing - methods ; Membranes, Artificial ; Polyethylene Glycols ; Rats ; Rats, Sprague-Dawley ; Time Factors</subject><ispartof>Journal of biomedical materials research. Part A, 2008-05, Vol.85A (2), p.285-292</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>Copyright 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4357-5da3e780525d446fb4601c2d3a385352a852c9aac8a098dc850bb9ca930423893</citedby><cites>FETCH-LOGICAL-c4357-5da3e780525d446fb4601c2d3a385352a852c9aac8a098dc850bb9ca930423893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31477$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31477$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17688293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wechsler, Sandra</creatorcontrib><creatorcontrib>Fehr, Daniel</creatorcontrib><creatorcontrib>Molenberg, Aart</creatorcontrib><creatorcontrib>Raeber, George</creatorcontrib><creatorcontrib>Schense, Jason C.</creatorcontrib><creatorcontrib>Weber, Franz E.</creatorcontrib><title>A novel, tissue occlusive poly(ethylene glycol) hydrogel material</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The use of guided bone regeneration (GBR) techniques requires new materials meeting the needs of clinical application. Design criteria for GBR devices are biocompatibility, tissue occlusion, space provision, and clinical manageability. This study evaluates a novel biodegradable poly (ethylene glycol) (PEG) based material as tissue occlusive membrane. A subcutaneous implant model in rats was developed to test the barrier function of the PEG hydrogels over time. Fourteen rats received three membrane implants and two positive controls each. Explants were collected over a period of 7 months. Histological analysis revealed that for at least 4 months cellular infiltration in the membrane explants was lower than 1% of that of the positive controls. Therefore, the PEG based hydrogel can be regarded as tissue occlusive during this period of time. A barrier function seems to be maintained for up to 6 months. In vitro degradation studies performed with the same PEG constructs confirm the in vivo result. In conclusion, our results indicate that this novel PEG‐based material has potential for use as a GBR barrier membrane. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008</description><subject>animal model</subject><subject>Animals</subject><subject>Bone Regeneration</subject><subject>dental implant</subject><subject>Female</subject><subject>Guided Tissue Regeneration - methods</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Materials Testing - methods</subject><subject>Membranes, Artificial</subject><subject>Polyethylene Glycols</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlOwzAQQC0EYj9xRzkhEKR4j30sFVvFIiQQEhfLcaYQcJoSJ4X8PYEWuMFp5vDmjfQQ2iK4RzCmh89p0bM9RniSLKBVIgSNuZZi8XPnOmZUyxW0FsJzB0ss6DJaIYlUimq2ivr9aFxOwR9EdR5CA1HpnG9CPoVoUvp2F-qn1sMYokffutLvRU9tVpWP4KPC1lDl1m-gpZH1ATbncx3dnRzfDs7ii-vT80H_InaciSQWmWWQqO6_yDiXo5RLTBzNmGVKMEGtEtRpa52yWKvMKYHTVDurGeaUKc3W0c7MO6nK1wZCbYo8OPDejqFsgkkwl5Rz8S_IqOCEctKB-zPQVWUIFYzMpMoLW7WGYPOZ1nRpjTVfaTt6e65t0gKyX3besgPIDHjLPbR_uczw6PJbGs9u8lDD-8-NrV6MTFgizP3VqcFDeftwMhiaG_YBA3CR6Q</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Wechsler, Sandra</creator><creator>Fehr, Daniel</creator><creator>Molenberg, Aart</creator><creator>Raeber, George</creator><creator>Schense, Jason C.</creator><creator>Weber, Franz E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200805</creationdate><title>A novel, tissue occlusive poly(ethylene glycol) hydrogel material</title><author>Wechsler, Sandra ; Fehr, Daniel ; Molenberg, Aart ; Raeber, George ; Schense, Jason C. ; Weber, Franz E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4357-5da3e780525d446fb4601c2d3a385352a852c9aac8a098dc850bb9ca930423893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>animal model</topic><topic>Animals</topic><topic>Bone Regeneration</topic><topic>dental implant</topic><topic>Female</topic><topic>Guided Tissue Regeneration - methods</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Materials Testing - methods</topic><topic>Membranes, Artificial</topic><topic>Polyethylene Glycols</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wechsler, Sandra</creatorcontrib><creatorcontrib>Fehr, Daniel</creatorcontrib><creatorcontrib>Molenberg, Aart</creatorcontrib><creatorcontrib>Raeber, George</creatorcontrib><creatorcontrib>Schense, Jason C.</creatorcontrib><creatorcontrib>Weber, Franz E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wechsler, Sandra</au><au>Fehr, Daniel</au><au>Molenberg, Aart</au><au>Raeber, George</au><au>Schense, Jason C.</au><au>Weber, Franz E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel, tissue occlusive poly(ethylene glycol) hydrogel material</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2008-05</date><risdate>2008</risdate><volume>85A</volume><issue>2</issue><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The use of guided bone regeneration (GBR) techniques requires new materials meeting the needs of clinical application. Design criteria for GBR devices are biocompatibility, tissue occlusion, space provision, and clinical manageability. This study evaluates a novel biodegradable poly (ethylene glycol) (PEG) based material as tissue occlusive membrane. A subcutaneous implant model in rats was developed to test the barrier function of the PEG hydrogels over time. Fourteen rats received three membrane implants and two positive controls each. Explants were collected over a period of 7 months. Histological analysis revealed that for at least 4 months cellular infiltration in the membrane explants was lower than 1% of that of the positive controls. Therefore, the PEG based hydrogel can be regarded as tissue occlusive during this period of time. A barrier function seems to be maintained for up to 6 months. In vitro degradation studies performed with the same PEG constructs confirm the in vivo result. In conclusion, our results indicate that this novel PEG‐based material has potential for use as a GBR barrier membrane. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17688293</pmid><doi>10.1002/jbm.a.31477</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2008-05, Vol.85A (2), p.285-292
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_70462445
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects animal model
Animals
Bone Regeneration
dental implant
Female
Guided Tissue Regeneration - methods
hydrogel
Hydrogels
Materials Testing - methods
Membranes, Artificial
Polyethylene Glycols
Rats
Rats, Sprague-Dawley
Time Factors
title A novel, tissue occlusive poly(ethylene glycol) hydrogel material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel,%20tissue%20occlusive%20poly(ethylene%20glycol)%20hydrogel%20material&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Wechsler,%20Sandra&rft.date=2008-05&rft.volume=85A&rft.issue=2&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31477&rft_dat=%3Cproquest_cross%3E70462445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32541241&rft_id=info:pmid/17688293&rfr_iscdi=true