In situ fluid typing and quantification with 1D and 2D NMR logging

Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accurac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2007-05, Vol.25 (4), p.521-524
1. Verfasser: Sun, Boqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 4
container_start_page 521
container_title Magnetic resonance imaging
container_volume 25
creator Sun, Boqin
description Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.
doi_str_mv 10.1016/j.mri.2006.11.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70449972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X06004139</els_id><sourcerecordid>19799250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</originalsourceid><addsrcrecordid>eNqFkU1v1DAURS0EokPpD-gGecUu6Xt2HNtCQqIflEoFpEKl7qzUcQYPGWdqJ0Xz7-swIyGxgJUXPvfq6VxCjhFKBKxPVuU6-pIB1CViCUw8IwtUkhdC6eo5WYDkUEgm7g7Iq5RWACAYFy_JAcqqrqVUC3J6FWjy40S7fvItHbcbH5a0CS19mJow-s7bZvRDoL_8-IPi-e8vdk6_fL6h_bBcZvo1edE1fXJH-_eQ3H68-H72qbj-enl19uG6sBWXY6EU8rbTUimouNC1crXlWjXSiXwMomZoRdvZrstX19BydPpe1qCRc7AV8EPydte7icPD5NJo1j5Z1_dNcMOUjISq0lqy_4KopdZMzI24A20cUoquM5vo103cGgQzGzYrkw2b2bBBNNlwzrzZl0_3a9f-SeyVZuDdDnDZxaN30STrXbCu9dHZ0bSD_2f9-7_Stvchj9D_dFuXVsMUQ5Zs0CRmwHybJ54XzsagQq75E5VZnWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19799250</pqid></control><display><type>article</type><title>In situ fluid typing and quantification with 1D and 2D NMR logging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Boqin</creator><creatorcontrib>Sun, Boqin</creatorcontrib><description>Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2006.11.025</identifier><identifier>PMID: 17466778</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>2D NMR logging ; Algorithms ; Diffusion ; Fluid typing ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Spectroscopy - methods ; NMR logging ; Oils - chemistry ; Porosity ; Radiology ; Relaxation ; Viscosity ; Water - chemistry</subject><ispartof>Magnetic resonance imaging, 2007-05, Vol.25 (4), p.521-524</ispartof><rights>Elsevier Inc.</rights><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</citedby><cites>FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X06004139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17466778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Boqin</creatorcontrib><title>In situ fluid typing and quantification with 1D and 2D NMR logging</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.</description><subject>2D NMR logging</subject><subject>Algorithms</subject><subject>Diffusion</subject><subject>Fluid typing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>NMR logging</subject><subject>Oils - chemistry</subject><subject>Porosity</subject><subject>Radiology</subject><subject>Relaxation</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAURS0EokPpD-gGecUu6Xt2HNtCQqIflEoFpEKl7qzUcQYPGWdqJ0Xz7-swIyGxgJUXPvfq6VxCjhFKBKxPVuU6-pIB1CViCUw8IwtUkhdC6eo5WYDkUEgm7g7Iq5RWACAYFy_JAcqqrqVUC3J6FWjy40S7fvItHbcbH5a0CS19mJow-s7bZvRDoL_8-IPi-e8vdk6_fL6h_bBcZvo1edE1fXJH-_eQ3H68-H72qbj-enl19uG6sBWXY6EU8rbTUimouNC1crXlWjXSiXwMomZoRdvZrstX19BydPpe1qCRc7AV8EPydte7icPD5NJo1j5Z1_dNcMOUjISq0lqy_4KopdZMzI24A20cUoquM5vo103cGgQzGzYrkw2b2bBBNNlwzrzZl0_3a9f-SeyVZuDdDnDZxaN30STrXbCu9dHZ0bSD_2f9-7_Stvchj9D_dFuXVsMUQ5Zs0CRmwHybJ54XzsagQq75E5VZnWI</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Sun, Boqin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070501</creationdate><title>In situ fluid typing and quantification with 1D and 2D NMR logging</title><author>Sun, Boqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>2D NMR logging</topic><topic>Algorithms</topic><topic>Diffusion</topic><topic>Fluid typing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>NMR logging</topic><topic>Oils - chemistry</topic><topic>Porosity</topic><topic>Radiology</topic><topic>Relaxation</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Boqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Boqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ fluid typing and quantification with 1D and 2D NMR logging</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>25</volume><issue>4</issue><spage>521</spage><epage>524</epage><pages>521-524</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>17466778</pmid><doi>10.1016/j.mri.2006.11.025</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2007-05, Vol.25 (4), p.521-524
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_70449972
source MEDLINE; Elsevier ScienceDirect Journals
subjects 2D NMR logging
Algorithms
Diffusion
Fluid typing
Image Processing, Computer-Assisted - methods
Magnetic Resonance Spectroscopy - methods
NMR logging
Oils - chemistry
Porosity
Radiology
Relaxation
Viscosity
Water - chemistry
title In situ fluid typing and quantification with 1D and 2D NMR logging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20fluid%20typing%20and%20quantification%20with%201D%20and%202D%20NMR%20logging&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Sun,%20Boqin&rft.date=2007-05-01&rft.volume=25&rft.issue=4&rft.spage=521&rft.epage=524&rft.pages=521-524&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2006.11.025&rft_dat=%3Cproquest_cross%3E19799250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19799250&rft_id=info:pmid/17466778&rft_els_id=S0730725X06004139&rfr_iscdi=true