In situ fluid typing and quantification with 1D and 2D NMR logging
Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accurac...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2007-05, Vol.25 (4), p.521-524 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 4 |
container_start_page | 521 |
container_title | Magnetic resonance imaging |
container_volume | 25 |
creator | Sun, Boqin |
description | Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. |
doi_str_mv | 10.1016/j.mri.2006.11.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70449972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X06004139</els_id><sourcerecordid>19799250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</originalsourceid><addsrcrecordid>eNqFkU1v1DAURS0EokPpD-gGecUu6Xt2HNtCQqIflEoFpEKl7qzUcQYPGWdqJ0Xz7-swIyGxgJUXPvfq6VxCjhFKBKxPVuU6-pIB1CViCUw8IwtUkhdC6eo5WYDkUEgm7g7Iq5RWACAYFy_JAcqqrqVUC3J6FWjy40S7fvItHbcbH5a0CS19mJow-s7bZvRDoL_8-IPi-e8vdk6_fL6h_bBcZvo1edE1fXJH-_eQ3H68-H72qbj-enl19uG6sBWXY6EU8rbTUimouNC1crXlWjXSiXwMomZoRdvZrstX19BydPpe1qCRc7AV8EPydte7icPD5NJo1j5Z1_dNcMOUjISq0lqy_4KopdZMzI24A20cUoquM5vo103cGgQzGzYrkw2b2bBBNNlwzrzZl0_3a9f-SeyVZuDdDnDZxaN30STrXbCu9dHZ0bSD_2f9-7_Stvchj9D_dFuXVsMUQ5Zs0CRmwHybJ54XzsagQq75E5VZnWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19799250</pqid></control><display><type>article</type><title>In situ fluid typing and quantification with 1D and 2D NMR logging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Boqin</creator><creatorcontrib>Sun, Boqin</creatorcontrib><description>Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2006.11.025</identifier><identifier>PMID: 17466778</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>2D NMR logging ; Algorithms ; Diffusion ; Fluid typing ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Spectroscopy - methods ; NMR logging ; Oils - chemistry ; Porosity ; Radiology ; Relaxation ; Viscosity ; Water - chemistry</subject><ispartof>Magnetic resonance imaging, 2007-05, Vol.25 (4), p.521-524</ispartof><rights>Elsevier Inc.</rights><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</citedby><cites>FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X06004139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17466778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Boqin</creatorcontrib><title>In situ fluid typing and quantification with 1D and 2D NMR logging</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.</description><subject>2D NMR logging</subject><subject>Algorithms</subject><subject>Diffusion</subject><subject>Fluid typing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>NMR logging</subject><subject>Oils - chemistry</subject><subject>Porosity</subject><subject>Radiology</subject><subject>Relaxation</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAURS0EokPpD-gGecUu6Xt2HNtCQqIflEoFpEKl7qzUcQYPGWdqJ0Xz7-swIyGxgJUXPvfq6VxCjhFKBKxPVuU6-pIB1CViCUw8IwtUkhdC6eo5WYDkUEgm7g7Iq5RWACAYFy_JAcqqrqVUC3J6FWjy40S7fvItHbcbH5a0CS19mJow-s7bZvRDoL_8-IPi-e8vdk6_fL6h_bBcZvo1edE1fXJH-_eQ3H68-H72qbj-enl19uG6sBWXY6EU8rbTUimouNC1crXlWjXSiXwMomZoRdvZrstX19BydPpe1qCRc7AV8EPydte7icPD5NJo1j5Z1_dNcMOUjISq0lqy_4KopdZMzI24A20cUoquM5vo103cGgQzGzYrkw2b2bBBNNlwzrzZl0_3a9f-SeyVZuDdDnDZxaN30STrXbCu9dHZ0bSD_2f9-7_Stvchj9D_dFuXVsMUQ5Zs0CRmwHybJ54XzsagQq75E5VZnWI</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Sun, Boqin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070501</creationdate><title>In situ fluid typing and quantification with 1D and 2D NMR logging</title><author>Sun, Boqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-8813df97880435968e6c398a7e546611921c5dfcff73060d31e9b76091330c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>2D NMR logging</topic><topic>Algorithms</topic><topic>Diffusion</topic><topic>Fluid typing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>NMR logging</topic><topic>Oils - chemistry</topic><topic>Porosity</topic><topic>Radiology</topic><topic>Relaxation</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Boqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Boqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ fluid typing and quantification with 1D and 2D NMR logging</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>25</volume><issue>4</issue><spage>521</spage><epage>524</epage><pages>521-524</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T2 distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T2 peaks arising from different fluids with similar apparent T2 relaxation times. Nevertheless, the shapes of T2 distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T2 distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T2 relaxation time and fluid diffusion coefficient (or T1 relaxation time). Since diffusion coefficients (or T1 relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>17466778</pmid><doi>10.1016/j.mri.2006.11.025</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2007-05, Vol.25 (4), p.521-524 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_proquest_miscellaneous_70449972 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 2D NMR logging Algorithms Diffusion Fluid typing Image Processing, Computer-Assisted - methods Magnetic Resonance Spectroscopy - methods NMR logging Oils - chemistry Porosity Radiology Relaxation Viscosity Water - chemistry |
title | In situ fluid typing and quantification with 1D and 2D NMR logging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20fluid%20typing%20and%20quantification%20with%201D%20and%202D%20NMR%20logging&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Sun,%20Boqin&rft.date=2007-05-01&rft.volume=25&rft.issue=4&rft.spage=521&rft.epage=524&rft.pages=521-524&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2006.11.025&rft_dat=%3Cproquest_cross%3E19799250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19799250&rft_id=info:pmid/17466778&rft_els_id=S0730725X06004139&rfr_iscdi=true |