Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues

Many plant disease resistance genes (R-genes) encode proteins characterized by the presence of a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) region and occur in clusters of related genes in plant genomes. One such gene, Mi-1, confers isolate-specific resistance against root-knot ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2007-05, Vol.114 (7), p.1289-1302
Hauptverfasser: Seah, Stuart, Telleen, Adam C, Williamson, Valerie M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1302
container_issue 7
container_start_page 1289
container_title Theoretical and applied genetics
container_volume 114
creator Seah, Stuart
Telleen, Adam C
Williamson, Valerie M
description Many plant disease resistance genes (R-genes) encode proteins characterized by the presence of a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) region and occur in clusters of related genes in plant genomes. One such gene, Mi-1, confers isolate-specific resistance against root-knot nematodes, aphids and whiteflies in cultivated tomato, Solanum lycopersicon. The DNA region carrying Mi-1 and six closely related sequences was introgressed into tomato from Solanum peruvianum in the 1940s. For both susceptible and resistant tomato, Mi-1 homologues are present in two clusters with 3 and 4 copies each on the short arm of chromosome 6. Two homologues from each source are pseudogenes, and one homologue from each source encodes a truncated product. DNA sequence identity among the homologues including the truncated genes, but excluding the pseudogenes, ranges from 92.9 to 96.7%. All the non-pseudogene homologues are transcribed. Comparison of homologues suggests that extensive sequence exchange has occurred. Regions of diversifying selection are present in the ARC2 domain of the NBS region and dispersed throughout the LRR region, suggesting that these regions are possible locations of specificity determinants. Other sequences in the introgressed region have similarity to the Arabidopsis auxin-receptor protein TIR1, a jumonji-like transcription factor and a Na⁺/H⁺ antiporter. Analysis of sequences flanking the Mi-1-homologues reveals blocks of homology, but complex differences in arrangement of these blocks when susceptible and resistant genotypes are compared indicating that the region has undergone considerable rearrangement during evolution, perhaps contributing to evolution of specificity.
doi_str_mv 10.1007/s00122-007-0519-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70448881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220606361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-b1801e89bbc38ceef4277e06056c1e60a48e6d4ff4ff302948665f977029a84a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhAdiAhVR2geNLYmdZVRQqFbGAriOPc5xJSezBTqDTB-P58ExGVGKDZMnH9vefi39CXjJ4xwDU-wTAOC9yWEDJ6uL-EVkxKXjBueSPyQpAQlGqkp-QZyndAgAvQTwlJ0wJpmXNV-T3lZ9i6CKmhC01vqXo29ChD3Oin_uC0RwjtcOcJoyJ9p5OYTRToG3vHEa63lEbxu2AdzSiidH4Dkf00wF1g_Hfe9_RhD9m9BbToUTahF9_ryje2c1edXhq-5-5TO92i2pAO_XBUzOGfN6EMQyhmzE9J0-cGRK-OO6n5Obyw7eLT8X1l49XF-fXhZWMTcWaaWCo6_XaCm0RneRKIVRQVpZhBUZqrFrpXF4CeC11VZWuVirHRksjTsnbJe82htxumpqxTxaHPBfmH2oUSKm1Zv8FWV3VTHGdwTf_gLdhjj4P0WgONWcCZIbYAtkYUoromm3sRxN3DYNmb32zWN_sw731zX3WvDomntcjtg-Ko9cZODsCJlkzuGyV7dMDp5WogYvMvV44Z0JjupiZm68ccmOQP0ZWXPwBkp3Dog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820921304</pqid></control><display><type>article</type><title>Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Seah, Stuart ; Telleen, Adam C ; Williamson, Valerie M</creator><creatorcontrib>Seah, Stuart ; Telleen, Adam C ; Williamson, Valerie M</creatorcontrib><description>Many plant disease resistance genes (R-genes) encode proteins characterized by the presence of a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) region and occur in clusters of related genes in plant genomes. One such gene, Mi-1, confers isolate-specific resistance against root-knot nematodes, aphids and whiteflies in cultivated tomato, Solanum lycopersicon. The DNA region carrying Mi-1 and six closely related sequences was introgressed into tomato from Solanum peruvianum in the 1940s. For both susceptible and resistant tomato, Mi-1 homologues are present in two clusters with 3 and 4 copies each on the short arm of chromosome 6. Two homologues from each source are pseudogenes, and one homologue from each source encodes a truncated product. DNA sequence identity among the homologues including the truncated genes, but excluding the pseudogenes, ranges from 92.9 to 96.7%. All the non-pseudogene homologues are transcribed. Comparison of homologues suggests that extensive sequence exchange has occurred. Regions of diversifying selection are present in the ARC2 domain of the NBS region and dispersed throughout the LRR region, suggesting that these regions are possible locations of specificity determinants. Other sequences in the introgressed region have similarity to the Arabidopsis auxin-receptor protein TIR1, a jumonji-like transcription factor and a Na⁺/H⁺ antiporter. Analysis of sequences flanking the Mi-1-homologues reveals blocks of homology, but complex differences in arrangement of these blocks when susceptible and resistant genotypes are compared indicating that the region has undergone considerable rearrangement during evolution, perhaps contributing to evolution of specificity.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-007-0519-z</identifier><identifier>PMID: 17318492</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Binding sites ; Biological and medical sciences ; Chromosome 6 ; Classical genetics, quantitative genetics, hybrids ; Contig Mapping ; Crop diseases ; Deoxyribonucleic acid ; Disease resistance ; DNA ; DNA - metabolism ; DNA Primers - chemistry ; DNA, Plant ; Fundamental and applied biological sciences. Psychology ; Gene clusters ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Genetic Techniques ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Genome, Plant ; Genomes ; Genotypes ; Homology ; Immunity, Innate ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Models, Genetic ; Multigene Family ; Na+/H+-exchanging ATPase ; Nematoda ; Nucleotide sequence ; Phylogeny ; Plant diseases ; Plant Diseases - genetics ; Pseudogenes ; Pteridophyta, spermatophyta ; Solanum peruvianum ; Vegetals</subject><ispartof>Theoretical and applied genetics, 2007-05, Vol.114 (7), p.1289-1302</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer-Verlag 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-b1801e89bbc38ceef4277e06056c1e60a48e6d4ff4ff302948665f977029a84a3</citedby><cites>FETCH-LOGICAL-c411t-b1801e89bbc38ceef4277e06056c1e60a48e6d4ff4ff302948665f977029a84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18739023$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17318492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seah, Stuart</creatorcontrib><creatorcontrib>Telleen, Adam C</creatorcontrib><creatorcontrib>Williamson, Valerie M</creatorcontrib><title>Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>Many plant disease resistance genes (R-genes) encode proteins characterized by the presence of a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) region and occur in clusters of related genes in plant genomes. One such gene, Mi-1, confers isolate-specific resistance against root-knot nematodes, aphids and whiteflies in cultivated tomato, Solanum lycopersicon. The DNA region carrying Mi-1 and six closely related sequences was introgressed into tomato from Solanum peruvianum in the 1940s. For both susceptible and resistant tomato, Mi-1 homologues are present in two clusters with 3 and 4 copies each on the short arm of chromosome 6. Two homologues from each source are pseudogenes, and one homologue from each source encodes a truncated product. DNA sequence identity among the homologues including the truncated genes, but excluding the pseudogenes, ranges from 92.9 to 96.7%. All the non-pseudogene homologues are transcribed. Comparison of homologues suggests that extensive sequence exchange has occurred. Regions of diversifying selection are present in the ARC2 domain of the NBS region and dispersed throughout the LRR region, suggesting that these regions are possible locations of specificity determinants. Other sequences in the introgressed region have similarity to the Arabidopsis auxin-receptor protein TIR1, a jumonji-like transcription factor and a Na⁺/H⁺ antiporter. Analysis of sequences flanking the Mi-1-homologues reveals blocks of homology, but complex differences in arrangement of these blocks when susceptible and resistant genotypes are compared indicating that the region has undergone considerable rearrangement during evolution, perhaps contributing to evolution of specificity.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Chromosome 6</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Contig Mapping</subject><subject>Crop diseases</subject><subject>Deoxyribonucleic acid</subject><subject>Disease resistance</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA Primers - chemistry</subject><subject>DNA, Plant</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene clusters</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic Techniques</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Homology</subject><subject>Immunity, Innate</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Models, Genetic</subject><subject>Multigene Family</subject><subject>Na+/H+-exchanging ATPase</subject><subject>Nematoda</subject><subject>Nucleotide sequence</subject><subject>Phylogeny</subject><subject>Plant diseases</subject><subject>Plant Diseases - genetics</subject><subject>Pseudogenes</subject><subject>Pteridophyta, spermatophyta</subject><subject>Solanum peruvianum</subject><subject>Vegetals</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhi0EokPhAdiAhVR2geNLYmdZVRQqFbGAriOPc5xJSezBTqDTB-P58ExGVGKDZMnH9vefi39CXjJ4xwDU-wTAOC9yWEDJ6uL-EVkxKXjBueSPyQpAQlGqkp-QZyndAgAvQTwlJ0wJpmXNV-T3lZ9i6CKmhC01vqXo29ChD3Oin_uC0RwjtcOcJoyJ9p5OYTRToG3vHEa63lEbxu2AdzSiidH4Dkf00wF1g_Hfe9_RhD9m9BbToUTahF9_ryje2c1edXhq-5-5TO92i2pAO_XBUzOGfN6EMQyhmzE9J0-cGRK-OO6n5Obyw7eLT8X1l49XF-fXhZWMTcWaaWCo6_XaCm0RneRKIVRQVpZhBUZqrFrpXF4CeC11VZWuVirHRksjTsnbJe82htxumpqxTxaHPBfmH2oUSKm1Zv8FWV3VTHGdwTf_gLdhjj4P0WgONWcCZIbYAtkYUoromm3sRxN3DYNmb32zWN_sw731zX3WvDomntcjtg-Ko9cZODsCJlkzuGyV7dMDp5WogYvMvV44Z0JjupiZm68ccmOQP0ZWXPwBkp3Dog</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Seah, Stuart</creator><creator>Telleen, Adam C</creator><creator>Williamson, Valerie M</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070501</creationdate><title>Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues</title><author>Seah, Stuart ; Telleen, Adam C ; Williamson, Valerie M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-b1801e89bbc38ceef4277e06056c1e60a48e6d4ff4ff302948665f977029a84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Chromosome 6</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Contig Mapping</topic><topic>Crop diseases</topic><topic>Deoxyribonucleic acid</topic><topic>Disease resistance</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA Primers - chemistry</topic><topic>DNA, Plant</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene clusters</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic Techniques</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Homology</topic><topic>Immunity, Innate</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Models, Genetic</topic><topic>Multigene Family</topic><topic>Na+/H+-exchanging ATPase</topic><topic>Nematoda</topic><topic>Nucleotide sequence</topic><topic>Phylogeny</topic><topic>Plant diseases</topic><topic>Plant Diseases - genetics</topic><topic>Pseudogenes</topic><topic>Pteridophyta, spermatophyta</topic><topic>Solanum peruvianum</topic><topic>Vegetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seah, Stuart</creatorcontrib><creatorcontrib>Telleen, Adam C</creatorcontrib><creatorcontrib>Williamson, Valerie M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seah, Stuart</au><au>Telleen, Adam C</au><au>Williamson, Valerie M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues</atitle><jtitle>Theoretical and applied genetics</jtitle><addtitle>Theor Appl Genet</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>114</volume><issue>7</issue><spage>1289</spage><epage>1302</epage><pages>1289-1302</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>Many plant disease resistance genes (R-genes) encode proteins characterized by the presence of a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) region and occur in clusters of related genes in plant genomes. One such gene, Mi-1, confers isolate-specific resistance against root-knot nematodes, aphids and whiteflies in cultivated tomato, Solanum lycopersicon. The DNA region carrying Mi-1 and six closely related sequences was introgressed into tomato from Solanum peruvianum in the 1940s. For both susceptible and resistant tomato, Mi-1 homologues are present in two clusters with 3 and 4 copies each on the short arm of chromosome 6. Two homologues from each source are pseudogenes, and one homologue from each source encodes a truncated product. DNA sequence identity among the homologues including the truncated genes, but excluding the pseudogenes, ranges from 92.9 to 96.7%. All the non-pseudogene homologues are transcribed. Comparison of homologues suggests that extensive sequence exchange has occurred. Regions of diversifying selection are present in the ARC2 domain of the NBS region and dispersed throughout the LRR region, suggesting that these regions are possible locations of specificity determinants. Other sequences in the introgressed region have similarity to the Arabidopsis auxin-receptor protein TIR1, a jumonji-like transcription factor and a Na⁺/H⁺ antiporter. Analysis of sequences flanking the Mi-1-homologues reveals blocks of homology, but complex differences in arrangement of these blocks when susceptible and resistant genotypes are compared indicating that the region has undergone considerable rearrangement during evolution, perhaps contributing to evolution of specificity.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17318492</pmid><doi>10.1007/s00122-007-0519-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2007-05, Vol.114 (7), p.1289-1302
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_70448881
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Arabidopsis
Arabidopsis - genetics
Binding sites
Biological and medical sciences
Chromosome 6
Classical genetics, quantitative genetics, hybrids
Contig Mapping
Crop diseases
Deoxyribonucleic acid
Disease resistance
DNA
DNA - metabolism
DNA Primers - chemistry
DNA, Plant
Fundamental and applied biological sciences. Psychology
Gene clusters
Gene Expression Regulation, Plant
Genes
Genes, Plant
Genetic Techniques
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Genome, Plant
Genomes
Genotypes
Homology
Immunity, Innate
Lycopersicon esculentum
Lycopersicon esculentum - genetics
Models, Genetic
Multigene Family
Na+/H+-exchanging ATPase
Nematoda
Nucleotide sequence
Phylogeny
Plant diseases
Plant Diseases - genetics
Pseudogenes
Pteridophyta, spermatophyta
Solanum peruvianum
Vegetals
title Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introgressed%20and%20endogenous%20Mi-1%20gene%20clusters%20in%20tomato%20differ%20by%20complex%20rearrangements%20in%20flanking%20sequences%20and%20show%20sequence%20exchange%20and%20diversifying%20selection%20among%20homologues&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Seah,%20Stuart&rft.date=2007-05-01&rft.volume=114&rft.issue=7&rft.spage=1289&rft.epage=1302&rft.pages=1289-1302&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/s00122-007-0519-z&rft_dat=%3Cproquest_cross%3E2220606361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820921304&rft_id=info:pmid/17318492&rfr_iscdi=true