The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO(2) at 10.6 microm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2007-05, Vol.52 (10), p.2703-2717
Hauptverfasser: Vila Verde, A, Ramos, M M D, Stoneham, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2717
container_issue 10
container_start_page 2703
container_title Physics in medicine & biology
container_volume 52
creator Vila Verde, A
Ramos, M M D
Stoneham, A M
description Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO(2) at 10.6 microm and Er:YAG at 2.94 microm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO(2) and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of approximately 10 micros are used, the CO(2) laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 micros duration can induce high stress transients which may cause unwanted cracking.
doi_str_mv 10.1088/0031-9155/52/10/005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70446266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70446266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e4ca78b6fd638fedcc3c1fcf3ef88f686d292716497e16b1ccda0773496c6add3</originalsourceid><addsrcrecordid>eNp9kE9PwyAYh4nRuDn9BCaGkweTblAobY9m8V-yxMs8EwYvimmhQnfw29u6ZR40nggvz-_3hgehS0rmlFTVghBGs5oWxaLIF5QM9-IITSkTNBOFIMdoeiAm6Cyld0IorXJ-iia05CVjXEyRW78BjqEBHCxuIYWkQ-c0boOBpnH-FTuPt95ATL3yZhz0YwJSF3z6ThnwvWoweNVCg_uAW2cy521UEQyOyjjVu-DP0YlVTYKL_TlDL_d36-Vjtnp-eFrerjLNuegz4FqV1UZYI1hlwWjNNLXaMrBVZUUlTF7nJRW8LoGKDdXaKFKWjNdCC2UMm6HrXW8Xw8cWUi9bl_TwGeUhbJMsybAnF2IA2Q7UMaQUwcouulbFT0mJHA3L0Z8c_ckiH4eD4SF1ta_fblowP5m90gG42QEudIfXP5pkZ-wAz3_D_63_AuMHk0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70446266</pqid></control><display><type>article</type><title>The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vila Verde, A ; Ramos, M M D ; Stoneham, A M</creator><creatorcontrib>Vila Verde, A ; Ramos, M M D ; Stoneham, A M</creatorcontrib><description>Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO(2) at 10.6 microm and Er:YAG at 2.94 microm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO(2) and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of approximately 10 micros are used, the CO(2) laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 micros duration can induce high stress transients which may cause unwanted cracking.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/52/10/005</identifier><identifier>PMID: 17473346</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Dental Enamel - pathology ; Dental Enamel - radiation effects ; Finite Element Analysis ; Humans ; Infrared Rays - adverse effects ; Laser Therapy ; Lasers - adverse effects ; Models, Biological ; Porosity ; Water - chemistry</subject><ispartof>Physics in medicine &amp; biology, 2007-05, Vol.52 (10), p.2703-2717</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-e4ca78b6fd638fedcc3c1fcf3ef88f686d292716497e16b1ccda0773496c6add3</citedby><cites>FETCH-LOGICAL-c446t-e4ca78b6fd638fedcc3c1fcf3ef88f686d292716497e16b1ccda0773496c6add3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/52/10/005/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17473346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vila Verde, A</creatorcontrib><creatorcontrib>Ramos, M M D</creatorcontrib><creatorcontrib>Stoneham, A M</creatorcontrib><title>The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO(2) at 10.6 microm and Er:YAG at 2.94 microm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO(2) and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of approximately 10 micros are used, the CO(2) laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 micros duration can induce high stress transients which may cause unwanted cracking.</description><subject>Dental Enamel - pathology</subject><subject>Dental Enamel - radiation effects</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Infrared Rays - adverse effects</subject><subject>Laser Therapy</subject><subject>Lasers - adverse effects</subject><subject>Models, Biological</subject><subject>Porosity</subject><subject>Water - chemistry</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9PwyAYh4nRuDn9BCaGkweTblAobY9m8V-yxMs8EwYvimmhQnfw29u6ZR40nggvz-_3hgehS0rmlFTVghBGs5oWxaLIF5QM9-IITSkTNBOFIMdoeiAm6Cyld0IorXJ-iia05CVjXEyRW78BjqEBHCxuIYWkQ-c0boOBpnH-FTuPt95ATL3yZhz0YwJSF3z6ThnwvWoweNVCg_uAW2cy521UEQyOyjjVu-DP0YlVTYKL_TlDL_d36-Vjtnp-eFrerjLNuegz4FqV1UZYI1hlwWjNNLXaMrBVZUUlTF7nJRW8LoGKDdXaKFKWjNdCC2UMm6HrXW8Xw8cWUi9bl_TwGeUhbJMsybAnF2IA2Q7UMaQUwcouulbFT0mJHA3L0Z8c_ckiH4eD4SF1ta_fblowP5m90gG42QEudIfXP5pkZ-wAz3_D_63_AuMHk0c</recordid><startdate>20070521</startdate><enddate>20070521</enddate><creator>Vila Verde, A</creator><creator>Ramos, M M D</creator><creator>Stoneham, A M</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070521</creationdate><title>The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation</title><author>Vila Verde, A ; Ramos, M M D ; Stoneham, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e4ca78b6fd638fedcc3c1fcf3ef88f686d292716497e16b1ccda0773496c6add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Dental Enamel - pathology</topic><topic>Dental Enamel - radiation effects</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Infrared Rays - adverse effects</topic><topic>Laser Therapy</topic><topic>Lasers - adverse effects</topic><topic>Models, Biological</topic><topic>Porosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vila Verde, A</creatorcontrib><creatorcontrib>Ramos, M M D</creatorcontrib><creatorcontrib>Stoneham, A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vila Verde, A</au><au>Ramos, M M D</au><au>Stoneham, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2007-05-21</date><risdate>2007</risdate><volume>52</volume><issue>10</issue><spage>2703</spage><epage>2717</epage><pages>2703-2717</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO(2) at 10.6 microm and Er:YAG at 2.94 microm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO(2) and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of approximately 10 micros are used, the CO(2) laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 micros duration can induce high stress transients which may cause unwanted cracking.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>17473346</pmid><doi>10.1088/0031-9155/52/10/005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2007-05, Vol.52 (10), p.2703-2717
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_70446266
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Dental Enamel - pathology
Dental Enamel - radiation effects
Finite Element Analysis
Humans
Infrared Rays - adverse effects
Laser Therapy
Lasers - adverse effects
Models, Biological
Porosity
Water - chemistry
title The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20mesoscopic%20modelling%20in%20understanding%20the%20response%20of%20dental%20enamel%20to%20mid-infrared%20radiation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Vila%20Verde,%20A&rft.date=2007-05-21&rft.volume=52&rft.issue=10&rft.spage=2703&rft.epage=2717&rft.pages=2703-2717&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/52/10/005&rft_dat=%3Cproquest_pubme%3E70446266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70446266&rft_id=info:pmid/17473346&rfr_iscdi=true