Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components

The proteins structure can be mainly classified into four classes: all‐α, all‐β, α/β, and α + β protein according to their chain fold topologies. For the purpose of predicting the protein structural class, a new predicting algorithm, in which the increment of diversity combines with Quadratic Discri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2007-07, Vol.28 (9), p.1463-1466
Hauptverfasser: Lin, Hao, Li, Qian-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1466
container_issue 9
container_start_page 1463
container_title Journal of computational chemistry
container_volume 28
creator Lin, Hao
Li, Qian-Zhong
description The proteins structure can be mainly classified into four classes: all‐α, all‐β, α/β, and α + β protein according to their chain fold topologies. For the purpose of predicting the protein structural class, a new predicting algorithm, in which the increment of diversity combines with Quadratic Discriminant analysis, is presented to study and predict protein structural class. On the basis of the concept of the pseudo amino acid composition (Chou, Proteins: Struct Funct Genet 2001, 43, 246; Erratum: Proteins Struct Funct Genet 2001, 44, 60), 400 dipeptide components and 20 amino acid composition are, respectively, selected as parameters of diversity source. Total of 204 nonhomologous proteins constructed by Chou (Chou, Biochem Biophys Res Commun 1999, 264, 216) are used for training and testing the predictive model. The predicted results by using the pseudo amino acids approach as proposed in this paper can remarkably improve the success rates, and hence the current method may play a complementary role to other existing methods for predicting protein structural classification. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007
doi_str_mv 10.1002/jcc.20554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70442140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70442140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-1822056078393926c143b6879cce096f331a24b656059e305965066e28fc1c753</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhwB9AFgckDmn9FcfhVq1gW1rBAapys7zOLHhJ7GA7gj3w3_E22yIh4cPMwc88mtGL0HNKTigh7HRr7QkjdS0eoAUlraxa1Xx5iBaEtqxSsqZH6ElKW0IIr6V4jI5owzlRii3Q7-vk_Fc8Jpi6gM3gfKnWddiGYQzJZRc8zgGPETpnc-khg_M45TjZPEXTY9ublN7gs7H8GfsNOrzeYedtiGOIJu_1ghDcuRHG7DqY1R58Tk_Ro43pEzw79GN0_e7t5-V5dfVxdbE8u6qsqIWoqGLlPEkaxVveMmmp4GupmtZaKOduOKeGibUsSN0CL0XWREpgamOpbWp-jF7N3rLijwlS1oNLFvreeAhT0g0RglFBCvjyH3AbpujLbprtnxCcF-j1DNkYUoqw0WN0g4k7TYneB6JLIPo2kMK-OAin9QDdX_KQQAFOZ-Cn62H3f5N-v1zeKat5wqUMv-4nTPyuZcObWt98WOkbdckuV5-UPud_AJ9poyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222224433</pqid></control><display><type>article</type><title>Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Hao ; Li, Qian-Zhong</creator><creatorcontrib>Lin, Hao ; Li, Qian-Zhong</creatorcontrib><description>The proteins structure can be mainly classified into four classes: all‐α, all‐β, α/β, and α + β protein according to their chain fold topologies. For the purpose of predicting the protein structural class, a new predicting algorithm, in which the increment of diversity combines with Quadratic Discriminant analysis, is presented to study and predict protein structural class. On the basis of the concept of the pseudo amino acid composition (Chou, Proteins: Struct Funct Genet 2001, 43, 246; Erratum: Proteins Struct Funct Genet 2001, 44, 60), 400 dipeptide components and 20 amino acid composition are, respectively, selected as parameters of diversity source. Total of 204 nonhomologous proteins constructed by Chou (Chou, Biochem Biophys Res Commun 1999, 264, 216) are used for training and testing the predictive model. The predicted results by using the pseudo amino acids approach as proposed in this paper can remarkably improve the success rates, and hence the current method may play a complementary role to other existing methods for predicting protein structural classification. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.20554</identifier><identifier>PMID: 17330882</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Amino acids ; Amino Acids - chemistry ; Biochemistry ; Databases, Protein ; dipeptide correlation ; Dipeptides - chemistry ; increment of diversity ; Models, Biological ; Peptides ; Protein Conformation ; protein structural class ; Proteins ; Proteins - chemistry ; Proteins - classification ; quadratic discriminant</subject><ispartof>Journal of computational chemistry, 2007-07, Vol.28 (9), p.1463-1466</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>Copyright (c) 2007 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jul 15, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-1822056078393926c143b6879cce096f331a24b656059e305965066e28fc1c753</citedby><cites>FETCH-LOGICAL-c4544-1822056078393926c143b6879cce096f331a24b656059e305965066e28fc1c753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.20554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.20554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17330882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Hao</creatorcontrib><creatorcontrib>Li, Qian-Zhong</creatorcontrib><title>Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>The proteins structure can be mainly classified into four classes: all‐α, all‐β, α/β, and α + β protein according to their chain fold topologies. For the purpose of predicting the protein structural class, a new predicting algorithm, in which the increment of diversity combines with Quadratic Discriminant analysis, is presented to study and predict protein structural class. On the basis of the concept of the pseudo amino acid composition (Chou, Proteins: Struct Funct Genet 2001, 43, 246; Erratum: Proteins Struct Funct Genet 2001, 44, 60), 400 dipeptide components and 20 amino acid composition are, respectively, selected as parameters of diversity source. Total of 204 nonhomologous proteins constructed by Chou (Chou, Biochem Biophys Res Commun 1999, 264, 216) are used for training and testing the predictive model. The predicted results by using the pseudo amino acids approach as proposed in this paper can remarkably improve the success rates, and hence the current method may play a complementary role to other existing methods for predicting protein structural classification. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Biochemistry</subject><subject>Databases, Protein</subject><subject>dipeptide correlation</subject><subject>Dipeptides - chemistry</subject><subject>increment of diversity</subject><subject>Models, Biological</subject><subject>Peptides</subject><subject>Protein Conformation</subject><subject>protein structural class</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - classification</subject><subject>quadratic discriminant</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhwB9AFgckDmn9FcfhVq1gW1rBAapys7zOLHhJ7GA7gj3w3_E22yIh4cPMwc88mtGL0HNKTigh7HRr7QkjdS0eoAUlraxa1Xx5iBaEtqxSsqZH6ElKW0IIr6V4jI5owzlRii3Q7-vk_Fc8Jpi6gM3gfKnWddiGYQzJZRc8zgGPETpnc-khg_M45TjZPEXTY9ublN7gs7H8GfsNOrzeYedtiGOIJu_1ghDcuRHG7DqY1R58Tk_Ro43pEzw79GN0_e7t5-V5dfVxdbE8u6qsqIWoqGLlPEkaxVveMmmp4GupmtZaKOduOKeGibUsSN0CL0XWREpgamOpbWp-jF7N3rLijwlS1oNLFvreeAhT0g0RglFBCvjyH3AbpujLbprtnxCcF-j1DNkYUoqw0WN0g4k7TYneB6JLIPo2kMK-OAin9QDdX_KQQAFOZ-Cn62H3f5N-v1zeKat5wqUMv-4nTPyuZcObWt98WOkbdckuV5-UPud_AJ9poyo</recordid><startdate>20070715</startdate><enddate>20070715</enddate><creator>Lin, Hao</creator><creator>Li, Qian-Zhong</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20070715</creationdate><title>Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components</title><author>Lin, Hao ; Li, Qian-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-1822056078393926c143b6879cce096f331a24b656059e305965066e28fc1c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Biochemistry</topic><topic>Databases, Protein</topic><topic>dipeptide correlation</topic><topic>Dipeptides - chemistry</topic><topic>increment of diversity</topic><topic>Models, Biological</topic><topic>Peptides</topic><topic>Protein Conformation</topic><topic>protein structural class</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - classification</topic><topic>quadratic discriminant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Hao</creatorcontrib><creatorcontrib>Li, Qian-Zhong</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Hao</au><au>Li, Qian-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2007-07-15</date><risdate>2007</risdate><volume>28</volume><issue>9</issue><spage>1463</spage><epage>1466</epage><pages>1463-1466</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>The proteins structure can be mainly classified into four classes: all‐α, all‐β, α/β, and α + β protein according to their chain fold topologies. For the purpose of predicting the protein structural class, a new predicting algorithm, in which the increment of diversity combines with Quadratic Discriminant analysis, is presented to study and predict protein structural class. On the basis of the concept of the pseudo amino acid composition (Chou, Proteins: Struct Funct Genet 2001, 43, 246; Erratum: Proteins Struct Funct Genet 2001, 44, 60), 400 dipeptide components and 20 amino acid composition are, respectively, selected as parameters of diversity source. Total of 204 nonhomologous proteins constructed by Chou (Chou, Biochem Biophys Res Commun 1999, 264, 216) are used for training and testing the predictive model. The predicted results by using the pseudo amino acids approach as proposed in this paper can remarkably improve the success rates, and hence the current method may play a complementary role to other existing methods for predicting protein structural classification. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17330882</pmid><doi>10.1002/jcc.20554</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2007-07, Vol.28 (9), p.1463-1466
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_70442140
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Amino acids
Amino Acids - chemistry
Biochemistry
Databases, Protein
dipeptide correlation
Dipeptides - chemistry
increment of diversity
Models, Biological
Peptides
Protein Conformation
protein structural class
Proteins
Proteins - chemistry
Proteins - classification
quadratic discriminant
title Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20pseudo%20amino%20acid%20composition%20to%20predict%20protein%20structural%20class:%20Approached%20by%20incorporating%20400%20dipeptide%20components&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Lin,%20Hao&rft.date=2007-07-15&rft.volume=28&rft.issue=9&rft.spage=1463&rft.epage=1466&rft.pages=1463-1466&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.20554&rft_dat=%3Cproquest_cross%3E70442140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222224433&rft_id=info:pmid/17330882&rfr_iscdi=true