Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase

In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-04, Vol.80 (7), p.2426-2438
Hauptverfasser: Zhao, C. F, Cann, N. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2438
container_issue 7
container_start_page 2426
container_title Analytical chemistry (Washington)
container_volume 80
creator Zhao, C. F
Cann, N. M
description In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.
doi_str_mv 10.1021/ac702126y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70441552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459081171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</originalsourceid><addsrcrecordid>eNpl0E1rGzEQBmBRWhon7aF_oIhCAzlsOqPVruRjcD9SkpJQp_gotNpRvcl6lUq7UP_7rrFjQ3Oawzy8zLyMvUM4RxD4yTo1DlGuX7AJFgKyUmvxkk0AIM-EAjhixyndAyAClq_ZEepcIIrphC1-hJbc0NrIP687u2pc4vN-qNc8eD5bNtG2_Ce58Ltr-iZ03IfI-yXxxZLah-wGn8y8t5u9jWt-u7SJ3rBX3raJ3u7mCfv19cvd7DK7vvn2fXZxnVkJus-Q8gKxqrxXwnpVVpLcVKu8rkk5rWUFEoVzjnxOqkRrnRA1wVRWU3CqxvyEnW5zH2P4M1DqzapJjtrWdhSGZBRIiUUhRvjhP3gfhtiNtxmBSmutynxEZ1vkYkgpkjePsVmNTxkEs6na7Kse7ftd4FCtqD7IXbcj-LgDNjnb-mg716S9EyBkqdXGZVvXpJ7-7vc2PphS5aowd7dzM19cyqscrkxxyLUuHZ54fuA_YGCgIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217888763</pqid></control><display><type>article</type><title>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhao, C. F ; Cann, N. M</creator><creatorcontrib>Zhao, C. F ; Cann, N. M</creatorcontrib><description>In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac702126y</identifier><identifier>PMID: 18321129</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatography, High Pressure Liquid - instrumentation ; Chromatography, High Pressure Liquid - methods ; Computer Simulation ; Exact sciences and technology ; General, instrumentation ; Hydrogen ; Hydrogen Bonding ; Hydrogen bonds ; Models, Molecular ; Molecular biology ; Molecular Conformation ; Molecules ; Probability ; Stereoisomerism</subject><ispartof>Analytical chemistry (Washington), 2008-04, Vol.80 (7), p.2426-2438</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</citedby><cites>FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac702126y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac702126y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20246879$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18321129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, C. F</creatorcontrib><creatorcontrib>Cann, N. M</creatorcontrib><title>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatography, High Pressure Liquid - instrumentation</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Probability</subject><subject>Stereoisomerism</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1rGzEQBmBRWhon7aF_oIhCAzlsOqPVruRjcD9SkpJQp_gotNpRvcl6lUq7UP_7rrFjQ3Oawzy8zLyMvUM4RxD4yTo1DlGuX7AJFgKyUmvxkk0AIM-EAjhixyndAyAClq_ZEepcIIrphC1-hJbc0NrIP687u2pc4vN-qNc8eD5bNtG2_Ce58Ltr-iZ03IfI-yXxxZLah-wGn8y8t5u9jWt-u7SJ3rBX3raJ3u7mCfv19cvd7DK7vvn2fXZxnVkJus-Q8gKxqrxXwnpVVpLcVKu8rkk5rWUFEoVzjnxOqkRrnRA1wVRWU3CqxvyEnW5zH2P4M1DqzapJjtrWdhSGZBRIiUUhRvjhP3gfhtiNtxmBSmutynxEZ1vkYkgpkjePsVmNTxkEs6na7Kse7ftd4FCtqD7IXbcj-LgDNjnb-mg716S9EyBkqdXGZVvXpJ7-7vc2PphS5aowd7dzM19cyqscrkxxyLUuHZ54fuA_YGCgIw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Zhao, C. F</creator><creator>Cann, N. M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</title><author>Zhao, C. F ; Cann, N. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatography, High Pressure Liquid - instrumentation</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Probability</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, C. F</creatorcontrib><creatorcontrib>Cann, N. M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, C. F</au><au>Cann, N. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>80</volume><issue>7</issue><spage>2426</spage><epage>2438</epage><pages>2426-2438</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18321129</pmid><doi>10.1021/ac702126y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-04, Vol.80 (7), p.2426-2438
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70441552
source ACS Publications; MEDLINE
subjects Analytical chemistry
Chemistry
Chromatography, High Pressure Liquid - instrumentation
Chromatography, High Pressure Liquid - methods
Computer Simulation
Exact sciences and technology
General, instrumentation
Hydrogen
Hydrogen Bonding
Hydrogen bonds
Models, Molecular
Molecular biology
Molecular Conformation
Molecules
Probability
Stereoisomerism
title Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Study%20of%20Chiral%20Recognition%20for%20the%20Whelk-O1%20Chiral%20Stationary%20Phase&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhao,%20C.%20F&rft.date=2008-04-01&rft.volume=80&rft.issue=7&rft.spage=2426&rft.epage=2438&rft.pages=2426-2438&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac702126y&rft_dat=%3Cproquest_cross%3E1459081171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217888763&rft_id=info:pmid/18321129&rfr_iscdi=true