Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase
In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a represen...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-04, Vol.80 (7), p.2426-2438 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2438 |
---|---|
container_issue | 7 |
container_start_page | 2426 |
container_title | Analytical chemistry (Washington) |
container_volume | 80 |
creator | Zhao, C. F Cann, N. M |
description | In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes. |
doi_str_mv | 10.1021/ac702126y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70441552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459081171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</originalsourceid><addsrcrecordid>eNpl0E1rGzEQBmBRWhon7aF_oIhCAzlsOqPVruRjcD9SkpJQp_gotNpRvcl6lUq7UP_7rrFjQ3Oawzy8zLyMvUM4RxD4yTo1DlGuX7AJFgKyUmvxkk0AIM-EAjhixyndAyAClq_ZEepcIIrphC1-hJbc0NrIP687u2pc4vN-qNc8eD5bNtG2_Ce58Ltr-iZ03IfI-yXxxZLah-wGn8y8t5u9jWt-u7SJ3rBX3raJ3u7mCfv19cvd7DK7vvn2fXZxnVkJus-Q8gKxqrxXwnpVVpLcVKu8rkk5rWUFEoVzjnxOqkRrnRA1wVRWU3CqxvyEnW5zH2P4M1DqzapJjtrWdhSGZBRIiUUhRvjhP3gfhtiNtxmBSmutynxEZ1vkYkgpkjePsVmNTxkEs6na7Kse7ftd4FCtqD7IXbcj-LgDNjnb-mg716S9EyBkqdXGZVvXpJ7-7vc2PphS5aowd7dzM19cyqscrkxxyLUuHZ54fuA_YGCgIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217888763</pqid></control><display><type>article</type><title>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhao, C. F ; Cann, N. M</creator><creatorcontrib>Zhao, C. F ; Cann, N. M</creatorcontrib><description>In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac702126y</identifier><identifier>PMID: 18321129</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatography, High Pressure Liquid - instrumentation ; Chromatography, High Pressure Liquid - methods ; Computer Simulation ; Exact sciences and technology ; General, instrumentation ; Hydrogen ; Hydrogen Bonding ; Hydrogen bonds ; Models, Molecular ; Molecular biology ; Molecular Conformation ; Molecules ; Probability ; Stereoisomerism</subject><ispartof>Analytical chemistry (Washington), 2008-04, Vol.80 (7), p.2426-2438</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</citedby><cites>FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac702126y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac702126y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20246879$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18321129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, C. F</creatorcontrib><creatorcontrib>Cann, N. M</creatorcontrib><title>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatography, High Pressure Liquid - instrumentation</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Probability</subject><subject>Stereoisomerism</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1rGzEQBmBRWhon7aF_oIhCAzlsOqPVruRjcD9SkpJQp_gotNpRvcl6lUq7UP_7rrFjQ3Oawzy8zLyMvUM4RxD4yTo1DlGuX7AJFgKyUmvxkk0AIM-EAjhixyndAyAClq_ZEepcIIrphC1-hJbc0NrIP687u2pc4vN-qNc8eD5bNtG2_Ce58Ltr-iZ03IfI-yXxxZLah-wGn8y8t5u9jWt-u7SJ3rBX3raJ3u7mCfv19cvd7DK7vvn2fXZxnVkJus-Q8gKxqrxXwnpVVpLcVKu8rkk5rWUFEoVzjnxOqkRrnRA1wVRWU3CqxvyEnW5zH2P4M1DqzapJjtrWdhSGZBRIiUUhRvjhP3gfhtiNtxmBSmutynxEZ1vkYkgpkjePsVmNTxkEs6na7Kse7ftd4FCtqD7IXbcj-LgDNjnb-mg716S9EyBkqdXGZVvXpJ7-7vc2PphS5aowd7dzM19cyqscrkxxyLUuHZ54fuA_YGCgIw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Zhao, C. F</creator><creator>Cann, N. M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</title><author>Zhao, C. F ; Cann, N. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-1e3511bbff72af76b4ec9873dde7c884b0412cccef3e761aac22de094b90c7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatography, High Pressure Liquid - instrumentation</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Probability</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, C. F</creatorcontrib><creatorcontrib>Cann, N. M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, C. F</au><au>Cann, N. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>80</volume><issue>7</issue><spage>2426</spage><epage>2438</epage><pages>2426-2438</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In this article, we examine the docking of 10 analytes on the Whelk-O1 stationary phase. A proper representation of analyte flexibility is essential in the docking analysis, and analyte force fields have been developed from a series of B3LYP calculations. Molecular dynamics simulations of a representative Whelk-O1 interface, in the presence of racemic analyte and solvent, form the basis of the analysis of chiral selectivity. The most probable docking arrangements are identified, the energy changes upon docking are evaluated, and separation factors are predicted. From comparisons between the analytes, the mechanism of chiral selectivity is divided into contributions from hydrogen bonding, ring−ring interactions, steric hindrance, and molecular flexibility. We find that both hydrogen bonding and ring−ring interactions are necessary to localize the analyte within the Whelk-O1 cleft region. We also identify one docking mechanism that is often dominant and analyze the conditions that lead to alternate docking modes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18321129</pmid><doi>10.1021/ac702126y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2008-04, Vol.80 (7), p.2426-2438 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70441552 |
source | ACS Publications; MEDLINE |
subjects | Analytical chemistry Chemistry Chromatography, High Pressure Liquid - instrumentation Chromatography, High Pressure Liquid - methods Computer Simulation Exact sciences and technology General, instrumentation Hydrogen Hydrogen Bonding Hydrogen bonds Models, Molecular Molecular biology Molecular Conformation Molecules Probability Stereoisomerism |
title | Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Study%20of%20Chiral%20Recognition%20for%20the%20Whelk-O1%20Chiral%20Stationary%20Phase&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhao,%20C.%20F&rft.date=2008-04-01&rft.volume=80&rft.issue=7&rft.spage=2426&rft.epage=2438&rft.pages=2426-2438&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac702126y&rft_dat=%3Cproquest_cross%3E1459081171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217888763&rft_id=info:pmid/18321129&rfr_iscdi=true |