Bayesian classification for the selection of in vitro human embryos using morphological and clinical data

Abstract In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2008-05, Vol.90 (2), p.104-116
Hauptverfasser: Morales, Dinora Araceli, Bengoetxea, Endika, Larrañaga, Pedro, García, Miguel, Franco, Yosu, Fresnada, Mónica, Merino, Marisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 2
container_start_page 104
container_title Computer methods and programs in biomedicine
container_volume 90
creator Morales, Dinora Araceli
Bengoetxea, Endika
Larrañaga, Pedro
García, Miguel
Franco, Yosu
Fresnada, Mónica
Merino, Marisa
description Abstract In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to aid to the selection of the most promising embryos that will form the batch to be transferred to the woman’s uterus. The aim of the supervised classification system is to improve overall success rate of each IVF treatment in which a batch of embryos is transferred each time, where the success is achieved when implantation (i.e. pregnancy) is obtained. Due to ethical reasons, different legislative restrictions apply in every country on this technique. In Spain, legislation allows a maximum of three embryos to form each transfer batch. As a result, clinicians prefer to select the embryos by non-invasive embryo examination based on simple methods and observation focused on morphology and dynamics of embryo development after fertilization. This paper proposes the application of Bayesian classifiers to this embryo selection problem in order to provide a decision support system that allows a more accurate selection than with the actual procedures which fully rely on the expertise and experience of embryologists. For this, we propose to take into consideration a reduced subset of feature variables related to embryo morphology and clinical data of patients, and from this data to induce Bayesian classification models. Results obtained applying a filter technique to choose the subset of variables, and the performance of Bayesian classifiers using them, are presented.
doi_str_mv 10.1016/j.cmpb.2007.11.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70439095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0169260707002957</els_id><sourcerecordid>19335477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4658-4e961ce44b40517cf79f3d709dd5ec97ddfa32c21c878b62527df9726b6429be3</originalsourceid><addsrcrecordid>eNqFksFrFDEYxYModq3-Ax4kJ28zJplJMgERtGhbKPRQPYdM8qWbdWayJjOF_e_NdFcED5YcQsLvPfje-xB6S0lNCRUfdrUd933NCJE1pTWh3TO0oZ1kleSCP0ebAqmKCSLP0Kucd4QQxrl4ic5oRxVRSmxQ-GIOkIOZsB1MzsEHa-YQJ-xjwvMWcIYB7ONP9DhM-CHMKeLtMhYJjH06xIyXHKZ7PMa038Yh3heLAZvJFcswPT6cmc1r9MKbIcOb032Ofnz7-v3iqrq5vby--HxT2VbwrmpBCWqhbfuWcCqtl8o3ThLlHAerpHPeNMwyajvZ9YJxJp1XkoletEz10Jyj90fffYq_FsizHkO2MAxmgrhkLUnblOH5kyBVTcNbKQvIjqBNMecEXu9TGE06aEr02oTe6bUJvTahKdWliSJ6d3Jf-hHcX8kp-gJ8PAJQwngIkHS2ASYLLqSSuHYx_N__0z_yP2n_hNLoLi5pKjFrqjPTRN-tu7CuQjmEKS6b3yA3r_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19335477</pqid></control><display><type>article</type><title>Bayesian classification for the selection of in vitro human embryos using morphological and clinical data</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Morales, Dinora Araceli ; Bengoetxea, Endika ; Larrañaga, Pedro ; García, Miguel ; Franco, Yosu ; Fresnada, Mónica ; Merino, Marisa</creator><creatorcontrib>Morales, Dinora Araceli ; Bengoetxea, Endika ; Larrañaga, Pedro ; García, Miguel ; Franco, Yosu ; Fresnada, Mónica ; Merino, Marisa</creatorcontrib><description>Abstract In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to aid to the selection of the most promising embryos that will form the batch to be transferred to the woman’s uterus. The aim of the supervised classification system is to improve overall success rate of each IVF treatment in which a batch of embryos is transferred each time, where the success is achieved when implantation (i.e. pregnancy) is obtained. Due to ethical reasons, different legislative restrictions apply in every country on this technique. In Spain, legislation allows a maximum of three embryos to form each transfer batch. As a result, clinicians prefer to select the embryos by non-invasive embryo examination based on simple methods and observation focused on morphology and dynamics of embryo development after fertilization. This paper proposes the application of Bayesian classifiers to this embryo selection problem in order to provide a decision support system that allows a more accurate selection than with the actual procedures which fully rely on the expertise and experience of embryologists. For this, we propose to take into consideration a reduced subset of feature variables related to embryo morphology and clinical data of patients, and from this data to induce Bayesian classification models. Results obtained applying a filter technique to choose the subset of variables, and the performance of Bayesian classifiers using them, are presented.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2007.11.018</identifier><identifier>PMID: 18190996</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Artificial Intelligence ; Bayes Theorem ; Bayesian classifiers ; Decision support systems ; Decision Support Techniques ; Embryo Transfer - methods ; Embryo Transfer - statistics &amp; numerical data ; Feature subset selection ; Female ; Fertilization in Vitro - methods ; Fertilization in Vitro - statistics &amp; numerical data ; Humans ; Internal Medicine ; IVF outcome prediction ; Male ; Other ; Pregnancy ; Zygote - classification ; Zygote - ultrastructure</subject><ispartof>Computer methods and programs in biomedicine, 2008-05, Vol.90 (2), p.104-116</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2007 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4658-4e961ce44b40517cf79f3d709dd5ec97ddfa32c21c878b62527df9726b6429be3</citedby><cites>FETCH-LOGICAL-c4658-4e961ce44b40517cf79f3d709dd5ec97ddfa32c21c878b62527df9726b6429be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2007.11.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18190996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morales, Dinora Araceli</creatorcontrib><creatorcontrib>Bengoetxea, Endika</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>García, Miguel</creatorcontrib><creatorcontrib>Franco, Yosu</creatorcontrib><creatorcontrib>Fresnada, Mónica</creatorcontrib><creatorcontrib>Merino, Marisa</creatorcontrib><title>Bayesian classification for the selection of in vitro human embryos using morphological and clinical data</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to aid to the selection of the most promising embryos that will form the batch to be transferred to the woman’s uterus. The aim of the supervised classification system is to improve overall success rate of each IVF treatment in which a batch of embryos is transferred each time, where the success is achieved when implantation (i.e. pregnancy) is obtained. Due to ethical reasons, different legislative restrictions apply in every country on this technique. In Spain, legislation allows a maximum of three embryos to form each transfer batch. As a result, clinicians prefer to select the embryos by non-invasive embryo examination based on simple methods and observation focused on morphology and dynamics of embryo development after fertilization. This paper proposes the application of Bayesian classifiers to this embryo selection problem in order to provide a decision support system that allows a more accurate selection than with the actual procedures which fully rely on the expertise and experience of embryologists. For this, we propose to take into consideration a reduced subset of feature variables related to embryo morphology and clinical data of patients, and from this data to induce Bayesian classification models. Results obtained applying a filter technique to choose the subset of variables, and the performance of Bayesian classifiers using them, are presented.</description><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian classifiers</subject><subject>Decision support systems</subject><subject>Decision Support Techniques</subject><subject>Embryo Transfer - methods</subject><subject>Embryo Transfer - statistics &amp; numerical data</subject><subject>Feature subset selection</subject><subject>Female</subject><subject>Fertilization in Vitro - methods</subject><subject>Fertilization in Vitro - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>IVF outcome prediction</subject><subject>Male</subject><subject>Other</subject><subject>Pregnancy</subject><subject>Zygote - classification</subject><subject>Zygote - ultrastructure</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFrFDEYxYModq3-Ax4kJ28zJplJMgERtGhbKPRQPYdM8qWbdWayJjOF_e_NdFcED5YcQsLvPfje-xB6S0lNCRUfdrUd933NCJE1pTWh3TO0oZ1kleSCP0ebAqmKCSLP0Kucd4QQxrl4ic5oRxVRSmxQ-GIOkIOZsB1MzsEHa-YQJ-xjwvMWcIYB7ONP9DhM-CHMKeLtMhYJjH06xIyXHKZ7PMa038Yh3heLAZvJFcswPT6cmc1r9MKbIcOb032Ofnz7-v3iqrq5vby--HxT2VbwrmpBCWqhbfuWcCqtl8o3ThLlHAerpHPeNMwyajvZ9YJxJp1XkoletEz10Jyj90fffYq_FsizHkO2MAxmgrhkLUnblOH5kyBVTcNbKQvIjqBNMecEXu9TGE06aEr02oTe6bUJvTahKdWliSJ6d3Jf-hHcX8kp-gJ8PAJQwngIkHS2ASYLLqSSuHYx_N__0z_yP2n_hNLoLi5pKjFrqjPTRN-tu7CuQjmEKS6b3yA3r_g</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Morales, Dinora Araceli</creator><creator>Bengoetxea, Endika</creator><creator>Larrañaga, Pedro</creator><creator>García, Miguel</creator><creator>Franco, Yosu</creator><creator>Fresnada, Mónica</creator><creator>Merino, Marisa</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200805</creationdate><title>Bayesian classification for the selection of in vitro human embryos using morphological and clinical data</title><author>Morales, Dinora Araceli ; Bengoetxea, Endika ; Larrañaga, Pedro ; García, Miguel ; Franco, Yosu ; Fresnada, Mónica ; Merino, Marisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4658-4e961ce44b40517cf79f3d709dd5ec97ddfa32c21c878b62527df9726b6429be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian classifiers</topic><topic>Decision support systems</topic><topic>Decision Support Techniques</topic><topic>Embryo Transfer - methods</topic><topic>Embryo Transfer - statistics &amp; numerical data</topic><topic>Feature subset selection</topic><topic>Female</topic><topic>Fertilization in Vitro - methods</topic><topic>Fertilization in Vitro - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>IVF outcome prediction</topic><topic>Male</topic><topic>Other</topic><topic>Pregnancy</topic><topic>Zygote - classification</topic><topic>Zygote - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Dinora Araceli</creatorcontrib><creatorcontrib>Bengoetxea, Endika</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>García, Miguel</creatorcontrib><creatorcontrib>Franco, Yosu</creatorcontrib><creatorcontrib>Fresnada, Mónica</creatorcontrib><creatorcontrib>Merino, Marisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Dinora Araceli</au><au>Bengoetxea, Endika</au><au>Larrañaga, Pedro</au><au>García, Miguel</au><au>Franco, Yosu</au><au>Fresnada, Mónica</au><au>Merino, Marisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian classification for the selection of in vitro human embryos using morphological and clinical data</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2008-05</date><risdate>2008</risdate><volume>90</volume><issue>2</issue><spage>104</spage><epage>116</epage><pages>104-116</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to aid to the selection of the most promising embryos that will form the batch to be transferred to the woman’s uterus. The aim of the supervised classification system is to improve overall success rate of each IVF treatment in which a batch of embryos is transferred each time, where the success is achieved when implantation (i.e. pregnancy) is obtained. Due to ethical reasons, different legislative restrictions apply in every country on this technique. In Spain, legislation allows a maximum of three embryos to form each transfer batch. As a result, clinicians prefer to select the embryos by non-invasive embryo examination based on simple methods and observation focused on morphology and dynamics of embryo development after fertilization. This paper proposes the application of Bayesian classifiers to this embryo selection problem in order to provide a decision support system that allows a more accurate selection than with the actual procedures which fully rely on the expertise and experience of embryologists. For this, we propose to take into consideration a reduced subset of feature variables related to embryo morphology and clinical data of patients, and from this data to induce Bayesian classification models. Results obtained applying a filter technique to choose the subset of variables, and the performance of Bayesian classifiers using them, are presented.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>18190996</pmid><doi>10.1016/j.cmpb.2007.11.018</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2008-05, Vol.90 (2), p.104-116
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_70439095
source MEDLINE; ScienceDirect Freedom Collection (Elsevier)
subjects Artificial Intelligence
Bayes Theorem
Bayesian classifiers
Decision support systems
Decision Support Techniques
Embryo Transfer - methods
Embryo Transfer - statistics & numerical data
Feature subset selection
Female
Fertilization in Vitro - methods
Fertilization in Vitro - statistics & numerical data
Humans
Internal Medicine
IVF outcome prediction
Male
Other
Pregnancy
Zygote - classification
Zygote - ultrastructure
title Bayesian classification for the selection of in vitro human embryos using morphological and clinical data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20classification%20for%20the%20selection%20of%20in%20vitro%20human%20embryos%20using%20morphological%20and%20clinical%20data&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Morales,%20Dinora%20Araceli&rft.date=2008-05&rft.volume=90&rft.issue=2&rft.spage=104&rft.epage=116&rft.pages=104-116&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2007.11.018&rft_dat=%3Cproquest_cross%3E19335477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19335477&rft_id=info:pmid/18190996&rft_els_id=1_s2_0_S0169260707002957&rfr_iscdi=true