Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models

Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological 1 , proteomic 2 , 3 and transcriptomic 4 profiling have been applied to map quantitative trait loci (QTLs). Metabolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2007-05, Vol.39 (5), p.666-672
Hauptverfasser: Dumas, Marc-Emmanuel, Wilder, Steven P, Bihoreau, Marie-Thérèse, Barton, Richard H, Fearnside, Jane F, Argoud, Karène, D'Amato, Lisa, Wallis, Robert H, Blancher, Christine, Keun, Hector C, Baunsgaard, Dorrit, Scott, James, Sidelmann, Ulla Grove, Nicholson, Jeremy K, Gauguier, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue 5
container_start_page 666
container_title Nature genetics
container_volume 39
creator Dumas, Marc-Emmanuel
Wilder, Steven P
Bihoreau, Marie-Thérèse
Barton, Richard H
Fearnside, Jane F
Argoud, Karène
D'Amato, Lisa
Wallis, Robert H
Blancher, Christine
Keun, Hector C
Baunsgaard, Dorrit
Scott, James
Sidelmann, Ulla Grove
Nicholson, Jeremy K
Gauguier, Dominique
description Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological 1 , proteomic 2 , 3 and transcriptomic 4 profiling have been applied to map quantitative trait loci (QTLs). Metabolic traits, already used in QTL studies in plants 5 , are essential phenotypes in mammalian genetics to define disease biomarkers. Using a complex mammalian system, here we show chromosomal mapping of untargeted plasma metabolic fingerprints derived from NMR spectroscopic analysis 6 in a cross between diabetic and control rats. We propose candidate metabolites for the most significant QTLs. Metabolite profiling in congenic strains provided evidence of QTL replication. Linkage to a gut microbial metabolite (benzoate) can be explained by deletion of a uridine diphosphate glucuronosyltransferase. Mapping metabotypic QTLs provides a practical approach to understanding genome-phenotype relationships in mammals and may uncover deeper biological complexity, as extended genome 7 (microbiome) perturbations that affect disease processes through transgenomic effects 8 may influence QTL detection.
doi_str_mv 10.1038/ng2026
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70431406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183393600</galeid><sourcerecordid>A183393600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-2a24ed2be528c4d0b9ba717580e9655cd6ac4669f3af47006893fe2b338429e83</originalsourceid><addsrcrecordid>eNqN0luL1DAUAOAiintRf4IERcWHWXNrmj4uu14WFha8vZbT9LRmaZNukorz7804A8MsgpKHhJMvl3M4RfGM0TNGhX7nBk65elAcs1KqFauYfpjXVLGVpEIdFScx3lLKpKT6cXHEKinKqtTHRbi0AU0idwu4ZBMk-xNJCmATGb1ZIplgnq0biO_zcppgtODIhAlaP1pD5h_ofFrPGIl1pLPQYsphcB1xPkx-GNcGpxwJkMjkOxzjk-JRD2PEp7v5tPj24f3Xi0-r65uPVxfn1ytT1jqtOHCJHW-x5NrIjrZ1CxXLn6ZYq7I0nQIjlap7Ab2sKFW6Fj3yVggteY1anBavt_fOwd8tGFMz2WhwHMGhX2JTUSmYpOqfkNUVlyWTGb64B2_9ElxOouGcKyEE3aCXWzTAiI11vc_lNJsbm3OmhaiFojSrs7-oPLpNtbzD3ub4wYG3BweySfgrDbDE2Fx9-fz_9ub7od0lb4KPMWDfzMFOENYNo82mtZpta2X4fJf80k7Y7dmulzJ4tQMQDYx9AGds3DtdCSH_uDdbF_OWGzDsq3jvyd8Cjd-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222633304</pqid></control><display><type>article</type><title>Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Dumas, Marc-Emmanuel ; Wilder, Steven P ; Bihoreau, Marie-Thérèse ; Barton, Richard H ; Fearnside, Jane F ; Argoud, Karène ; D'Amato, Lisa ; Wallis, Robert H ; Blancher, Christine ; Keun, Hector C ; Baunsgaard, Dorrit ; Scott, James ; Sidelmann, Ulla Grove ; Nicholson, Jeremy K ; Gauguier, Dominique</creator><creatorcontrib>Dumas, Marc-Emmanuel ; Wilder, Steven P ; Bihoreau, Marie-Thérèse ; Barton, Richard H ; Fearnside, Jane F ; Argoud, Karène ; D'Amato, Lisa ; Wallis, Robert H ; Blancher, Christine ; Keun, Hector C ; Baunsgaard, Dorrit ; Scott, James ; Sidelmann, Ulla Grove ; Nicholson, Jeremy K ; Gauguier, Dominique</creatorcontrib><description>Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological 1 , proteomic 2 , 3 and transcriptomic 4 profiling have been applied to map quantitative trait loci (QTLs). Metabolic traits, already used in QTL studies in plants 5 , are essential phenotypes in mammalian genetics to define disease biomarkers. Using a complex mammalian system, here we show chromosomal mapping of untargeted plasma metabolic fingerprints derived from NMR spectroscopic analysis 6 in a cross between diabetic and control rats. We propose candidate metabolites for the most significant QTLs. Metabolite profiling in congenic strains provided evidence of QTL replication. Linkage to a gut microbial metabolite (benzoate) can be explained by deletion of a uridine diphosphate glucuronosyltransferase. Mapping metabotypic QTLs provides a practical approach to understanding genome-phenotype relationships in mammals and may uncover deeper biological complexity, as extended genome 7 (microbiome) perturbations that affect disease processes through transgenomic effects 8 may influence QTL detection.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng2026</identifier><identifier>PMID: 17435758</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Animals ; Base Sequence ; Benzoates - chemistry ; Biological and medical sciences ; Biomarkers - analysis ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Diabetes ; Diabetes Mellitus - genetics ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiology ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Gene mapping ; Genetic Linkage ; Genetic markers ; Genetic variation ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Genome - genetics ; Genomics ; Genotype &amp; phenotype ; Glucuronosyltransferase - genetics ; Human Genetics ; letter ; Lod Score ; Mammals ; Medical sciences ; Metabolism - genetics ; Metabolites ; Molecular Sequence Data ; Molecular Structure ; Nuclear Magnetic Resonance, Biomolecular ; Phenotype ; Phenotypic variations ; Physiological aspects ; Proteomics ; Quantitative Trait Loci ; Rats ; Rodents ; Sequence Analysis, DNA</subject><ispartof>Nature genetics, 2007-05, Vol.39 (5), p.666-672</ispartof><rights>Springer Nature America, Inc. 2007</rights><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-2a24ed2be528c4d0b9ba717580e9655cd6ac4669f3af47006893fe2b338429e83</citedby><cites>FETCH-LOGICAL-c598t-2a24ed2be528c4d0b9ba717580e9655cd6ac4669f3af47006893fe2b338429e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng2026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng2026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18733458$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17435758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumas, Marc-Emmanuel</creatorcontrib><creatorcontrib>Wilder, Steven P</creatorcontrib><creatorcontrib>Bihoreau, Marie-Thérèse</creatorcontrib><creatorcontrib>Barton, Richard H</creatorcontrib><creatorcontrib>Fearnside, Jane F</creatorcontrib><creatorcontrib>Argoud, Karène</creatorcontrib><creatorcontrib>D'Amato, Lisa</creatorcontrib><creatorcontrib>Wallis, Robert H</creatorcontrib><creatorcontrib>Blancher, Christine</creatorcontrib><creatorcontrib>Keun, Hector C</creatorcontrib><creatorcontrib>Baunsgaard, Dorrit</creatorcontrib><creatorcontrib>Scott, James</creatorcontrib><creatorcontrib>Sidelmann, Ulla Grove</creatorcontrib><creatorcontrib>Nicholson, Jeremy K</creatorcontrib><creatorcontrib>Gauguier, Dominique</creatorcontrib><title>Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological 1 , proteomic 2 , 3 and transcriptomic 4 profiling have been applied to map quantitative trait loci (QTLs). Metabolic traits, already used in QTL studies in plants 5 , are essential phenotypes in mammalian genetics to define disease biomarkers. Using a complex mammalian system, here we show chromosomal mapping of untargeted plasma metabolic fingerprints derived from NMR spectroscopic analysis 6 in a cross between diabetic and control rats. We propose candidate metabolites for the most significant QTLs. Metabolite profiling in congenic strains provided evidence of QTL replication. Linkage to a gut microbial metabolite (benzoate) can be explained by deletion of a uridine diphosphate glucuronosyltransferase. Mapping metabotypic QTLs provides a practical approach to understanding genome-phenotype relationships in mammals and may uncover deeper biological complexity, as extended genome 7 (microbiome) perturbations that affect disease processes through transgenomic effects 8 may influence QTL detection.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Benzoates - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Diabetes</subject><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiology</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Genetic Linkage</subject><subject>Genetic markers</subject><subject>Genetic variation</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome - genetics</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Glucuronosyltransferase - genetics</subject><subject>Human Genetics</subject><subject>letter</subject><subject>Lod Score</subject><subject>Mammals</subject><subject>Medical sciences</subject><subject>Metabolism - genetics</subject><subject>Metabolites</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Quantitative Trait Loci</subject><subject>Rats</subject><subject>Rodents</subject><subject>Sequence Analysis, DNA</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0luL1DAUAOAiintRf4IERcWHWXNrmj4uu14WFha8vZbT9LRmaZNukorz7804A8MsgpKHhJMvl3M4RfGM0TNGhX7nBk65elAcs1KqFauYfpjXVLGVpEIdFScx3lLKpKT6cXHEKinKqtTHRbi0AU0idwu4ZBMk-xNJCmATGb1ZIplgnq0biO_zcppgtODIhAlaP1pD5h_ofFrPGIl1pLPQYsphcB1xPkx-GNcGpxwJkMjkOxzjk-JRD2PEp7v5tPj24f3Xi0-r65uPVxfn1ytT1jqtOHCJHW-x5NrIjrZ1CxXLn6ZYq7I0nQIjlap7Ab2sKFW6Fj3yVggteY1anBavt_fOwd8tGFMz2WhwHMGhX2JTUSmYpOqfkNUVlyWTGb64B2_9ElxOouGcKyEE3aCXWzTAiI11vc_lNJsbm3OmhaiFojSrs7-oPLpNtbzD3ub4wYG3BweySfgrDbDE2Fx9-fz_9ub7od0lb4KPMWDfzMFOENYNo82mtZpta2X4fJf80k7Y7dmulzJ4tQMQDYx9AGds3DtdCSH_uDdbF_OWGzDsq3jvyd8Cjd-w</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Dumas, Marc-Emmanuel</creator><creator>Wilder, Steven P</creator><creator>Bihoreau, Marie-Thérèse</creator><creator>Barton, Richard H</creator><creator>Fearnside, Jane F</creator><creator>Argoud, Karène</creator><creator>D'Amato, Lisa</creator><creator>Wallis, Robert H</creator><creator>Blancher, Christine</creator><creator>Keun, Hector C</creator><creator>Baunsgaard, Dorrit</creator><creator>Scott, James</creator><creator>Sidelmann, Ulla Grove</creator><creator>Nicholson, Jeremy K</creator><creator>Gauguier, Dominique</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070501</creationdate><title>Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models</title><author>Dumas, Marc-Emmanuel ; Wilder, Steven P ; Bihoreau, Marie-Thérèse ; Barton, Richard H ; Fearnside, Jane F ; Argoud, Karène ; D'Amato, Lisa ; Wallis, Robert H ; Blancher, Christine ; Keun, Hector C ; Baunsgaard, Dorrit ; Scott, James ; Sidelmann, Ulla Grove ; Nicholson, Jeremy K ; Gauguier, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-2a24ed2be528c4d0b9ba717580e9655cd6ac4669f3af47006893fe2b338429e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Benzoates - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Diabetes</topic><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiology</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Genetic Linkage</topic><topic>Genetic markers</topic><topic>Genetic variation</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome - genetics</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Glucuronosyltransferase - genetics</topic><topic>Human Genetics</topic><topic>letter</topic><topic>Lod Score</topic><topic>Mammals</topic><topic>Medical sciences</topic><topic>Metabolism - genetics</topic><topic>Metabolites</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Quantitative Trait Loci</topic><topic>Rats</topic><topic>Rodents</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumas, Marc-Emmanuel</creatorcontrib><creatorcontrib>Wilder, Steven P</creatorcontrib><creatorcontrib>Bihoreau, Marie-Thérèse</creatorcontrib><creatorcontrib>Barton, Richard H</creatorcontrib><creatorcontrib>Fearnside, Jane F</creatorcontrib><creatorcontrib>Argoud, Karène</creatorcontrib><creatorcontrib>D'Amato, Lisa</creatorcontrib><creatorcontrib>Wallis, Robert H</creatorcontrib><creatorcontrib>Blancher, Christine</creatorcontrib><creatorcontrib>Keun, Hector C</creatorcontrib><creatorcontrib>Baunsgaard, Dorrit</creatorcontrib><creatorcontrib>Scott, James</creatorcontrib><creatorcontrib>Sidelmann, Ulla Grove</creatorcontrib><creatorcontrib>Nicholson, Jeremy K</creatorcontrib><creatorcontrib>Gauguier, Dominique</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumas, Marc-Emmanuel</au><au>Wilder, Steven P</au><au>Bihoreau, Marie-Thérèse</au><au>Barton, Richard H</au><au>Fearnside, Jane F</au><au>Argoud, Karène</au><au>D'Amato, Lisa</au><au>Wallis, Robert H</au><au>Blancher, Christine</au><au>Keun, Hector C</au><au>Baunsgaard, Dorrit</au><au>Scott, James</au><au>Sidelmann, Ulla Grove</au><au>Nicholson, Jeremy K</au><au>Gauguier, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>39</volume><issue>5</issue><spage>666</spage><epage>672</epage><pages>666-672</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological 1 , proteomic 2 , 3 and transcriptomic 4 profiling have been applied to map quantitative trait loci (QTLs). Metabolic traits, already used in QTL studies in plants 5 , are essential phenotypes in mammalian genetics to define disease biomarkers. Using a complex mammalian system, here we show chromosomal mapping of untargeted plasma metabolic fingerprints derived from NMR spectroscopic analysis 6 in a cross between diabetic and control rats. We propose candidate metabolites for the most significant QTLs. Metabolite profiling in congenic strains provided evidence of QTL replication. Linkage to a gut microbial metabolite (benzoate) can be explained by deletion of a uridine diphosphate glucuronosyltransferase. Mapping metabotypic QTLs provides a practical approach to understanding genome-phenotype relationships in mammals and may uncover deeper biological complexity, as extended genome 7 (microbiome) perturbations that affect disease processes through transgenomic effects 8 may influence QTL detection.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17435758</pmid><doi>10.1038/ng2026</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2007-05, Vol.39 (5), p.666-672
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_70431406
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Agriculture
Animal Genetics and Genomics
Animals
Base Sequence
Benzoates - chemistry
Biological and medical sciences
Biomarkers - analysis
Biomedical and Life Sciences
Biomedicine
Cancer Research
Diabetes
Diabetes Mellitus - genetics
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiology
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fundamental and applied biological sciences. Psychology
Gene Function
Gene mapping
Genetic Linkage
Genetic markers
Genetic variation
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Genome - genetics
Genomics
Genotype & phenotype
Glucuronosyltransferase - genetics
Human Genetics
letter
Lod Score
Mammals
Medical sciences
Metabolism - genetics
Metabolites
Molecular Sequence Data
Molecular Structure
Nuclear Magnetic Resonance, Biomolecular
Phenotype
Phenotypic variations
Physiological aspects
Proteomics
Quantitative Trait Loci
Rats
Rodents
Sequence Analysis, DNA
title Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20quantitative%20trait%20locus%20mapping%20of%20mammalian%20metabolic%20phenotypes%20in%20diabetic%20and%20normoglycemic%20rat%20models&rft.jtitle=Nature%20genetics&rft.au=Dumas,%20Marc-Emmanuel&rft.date=2007-05-01&rft.volume=39&rft.issue=5&rft.spage=666&rft.epage=672&rft.pages=666-672&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng2026&rft_dat=%3Cgale_proqu%3EA183393600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222633304&rft_id=info:pmid/17435758&rft_galeid=A183393600&rfr_iscdi=true