Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates

Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2008-04, Vol.149 (4), p.1551-1561
Hauptverfasser: Nantermet, Pascale, Harada, Shun-ichi, Liu, Yuan, Cheng, Spring, Johnson, Colena, Yu, Yuanjiang, Kimme, Donald, Holder, Daniel, Hodor, Paul, Phillips, Robert, Ray, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1561
container_issue 4
container_start_page 1551
container_title Endocrinology (Philadelphia)
container_volume 149
creator Nantermet, Pascale
Harada, Shun-ichi
Liu, Yuan
Cheng, Spring
Johnson, Colena
Yu, Yuanjiang
Kimme, Donald
Holder, Daniel
Hodor, Paul
Phillips, Robert
Ray, William J
description Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P < 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.
doi_str_mv 10.1210/en.2007-1151
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70421801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2007-1151</oup_id><sourcerecordid>3130591535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EokvhxhlFQpQLKZ7YTuJjtS1tpa2oEJwjrz2765K1g50g8k_4uTjdiEoIxMlfz8w7M68JeQn0FAqg79GdFpRWOYCAR2QBkou8goo-JgtKgeVVUVRH5FmMd-nIOWdPyRHUUFdClAvy8xIdZhc_uoAxWu-yM6faMWLMrMuWo_N7326HmN149xXHmN0G_92a9HyDeqecjb3V2bWLdrvrU0jvs6u0zc8xXfVjtrKd74Lv0bp8ufMtxh6Db7NPaAbdT3rrMUma4LcpYtK8DXaveozPyZONaiO-mNdj8uXDxeflVb76eHm9PFvlmgve56VkGmEjJZRrw6FkiLzim5qDUrJEbSTUpq7BgCmRGYVcrgWVlRYlN4pRdkxODnlTmd-GVF-zt1Fj2yqHfohNRXkBdRrk_0CQspLsPuPrP8A7P4Q01tgwYFRIEEwk6t2B0sHHGHDTdFPnYWyANpOxDbpmMraZjE34qznpsN6jeYBnJxPwZgZU1KrdBOW0jb-5goJkIKfq3h44P3T_ksxnSXYg0Rmvg3V4_0keuvlrob8A9qPKIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130591535</pqid></control><display><type>article</type><title>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Nantermet, Pascale ; Harada, Shun-ichi ; Liu, Yuan ; Cheng, Spring ; Johnson, Colena ; Yu, Yuanjiang ; Kimme, Donald ; Holder, Daniel ; Hodor, Paul ; Phillips, Robert ; Ray, William J</creator><creatorcontrib>Nantermet, Pascale ; Harada, Shun-ichi ; Liu, Yuan ; Cheng, Spring ; Johnson, Colena ; Yu, Yuanjiang ; Kimme, Donald ; Holder, Daniel ; Hodor, Paul ; Phillips, Robert ; Ray, William J</creatorcontrib><description>Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P &lt; 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2007-1151</identifier><identifier>PMID: 18187556</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Bethesda, MD: Endocrine Society</publisher><subject>Adipogenesis ; Adipose tissue ; Adipose Tissue - metabolism ; Androgens ; Animals ; Biological and medical sciences ; Biopsy ; Body Composition ; Body fat ; Cell adhesion ; Cholesterol ; Cholesterol 7-alpha-Hydroxylase - genetics ; Cholesterol 7-alpha-Hydroxylase - physiology ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol, HDL - blood ; Cholesterol, LDL - blood ; Cholesteryl ester transfer protein ; Cynomolgus ; Cytoskeleton ; Dihydrotestosterone ; Dihydrotestosterone - pharmacology ; Disorders of blood lipids. Hyperlipoproteinemia ; DNA microarrays ; Dose-Response Relationship, Drug ; Extracellular matrix ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene regulation ; Gene silencing ; Genes ; High density ; High density lipoprotein ; Homeostasis ; Lipid metabolism ; Lipids ; Lipoproteins ; Liver ; Liver - metabolism ; Macaca fascicularis ; Medical sciences ; Metabolic diseases ; Metabolism ; Monkeys ; Monkeys &amp; apes ; NMR ; Nuclear magnetic resonance ; Oligonucleotide Array Sequence Analysis ; Particle Size ; Primates ; Protein turnover ; Rats ; Rats, Sprague-Dawley ; Receptors, Cytoplasmic and Nuclear - genetics ; Ribonucleic acid ; RNA ; Synthesis ; Transcription ; Triglycerides ; Vertebrates: endocrinology ; β-Catenin</subject><ispartof>Endocrinology (Philadelphia), 2008-04, Vol.149 (4), p.1551-1561</ispartof><rights>Copyright © 2008 by the Endocrine Society 2008</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008 by the Endocrine Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</citedby><cites>FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20193190$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18187556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nantermet, Pascale</creatorcontrib><creatorcontrib>Harada, Shun-ichi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Cheng, Spring</creatorcontrib><creatorcontrib>Johnson, Colena</creatorcontrib><creatorcontrib>Yu, Yuanjiang</creatorcontrib><creatorcontrib>Kimme, Donald</creatorcontrib><creatorcontrib>Holder, Daniel</creatorcontrib><creatorcontrib>Hodor, Paul</creatorcontrib><creatorcontrib>Phillips, Robert</creatorcontrib><creatorcontrib>Ray, William J</creatorcontrib><title>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P &lt; 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.</description><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Androgens</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Body Composition</subject><subject>Body fat</subject><subject>Cell adhesion</subject><subject>Cholesterol</subject><subject>Cholesterol 7-alpha-Hydroxylase - genetics</subject><subject>Cholesterol 7-alpha-Hydroxylase - physiology</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol, HDL - blood</subject><subject>Cholesterol, LDL - blood</subject><subject>Cholesteryl ester transfer protein</subject><subject>Cynomolgus</subject><subject>Cytoskeleton</subject><subject>Dihydrotestosterone</subject><subject>Dihydrotestosterone - pharmacology</subject><subject>Disorders of blood lipids. Hyperlipoproteinemia</subject><subject>DNA microarrays</subject><subject>Dose-Response Relationship, Drug</subject><subject>Extracellular matrix</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>High density</subject><subject>High density lipoprotein</subject><subject>Homeostasis</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Macaca fascicularis</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Metabolism</subject><subject>Monkeys</subject><subject>Monkeys &amp; apes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Particle Size</subject><subject>Primates</subject><subject>Protein turnover</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Synthesis</subject><subject>Transcription</subject><subject>Triglycerides</subject><subject>Vertebrates: endocrinology</subject><subject>β-Catenin</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EokvhxhlFQpQLKZ7YTuJjtS1tpa2oEJwjrz2765K1g50g8k_4uTjdiEoIxMlfz8w7M68JeQn0FAqg79GdFpRWOYCAR2QBkou8goo-JgtKgeVVUVRH5FmMd-nIOWdPyRHUUFdClAvy8xIdZhc_uoAxWu-yM6faMWLMrMuWo_N7326HmN149xXHmN0G_92a9HyDeqecjb3V2bWLdrvrU0jvs6u0zc8xXfVjtrKd74Lv0bp8ufMtxh6Db7NPaAbdT3rrMUma4LcpYtK8DXaveozPyZONaiO-mNdj8uXDxeflVb76eHm9PFvlmgve56VkGmEjJZRrw6FkiLzim5qDUrJEbSTUpq7BgCmRGYVcrgWVlRYlN4pRdkxODnlTmd-GVF-zt1Fj2yqHfohNRXkBdRrk_0CQspLsPuPrP8A7P4Q01tgwYFRIEEwk6t2B0sHHGHDTdFPnYWyANpOxDbpmMraZjE34qznpsN6jeYBnJxPwZgZU1KrdBOW0jb-5goJkIKfq3h44P3T_ksxnSXYg0Rmvg3V4_0keuvlrob8A9qPKIQ</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Nantermet, Pascale</creator><creator>Harada, Shun-ichi</creator><creator>Liu, Yuan</creator><creator>Cheng, Spring</creator><creator>Johnson, Colena</creator><creator>Yu, Yuanjiang</creator><creator>Kimme, Donald</creator><creator>Holder, Daniel</creator><creator>Hodor, Paul</creator><creator>Phillips, Robert</creator><creator>Ray, William J</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</title><author>Nantermet, Pascale ; Harada, Shun-ichi ; Liu, Yuan ; Cheng, Spring ; Johnson, Colena ; Yu, Yuanjiang ; Kimme, Donald ; Holder, Daniel ; Hodor, Paul ; Phillips, Robert ; Ray, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Androgens</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Body Composition</topic><topic>Body fat</topic><topic>Cell adhesion</topic><topic>Cholesterol</topic><topic>Cholesterol 7-alpha-Hydroxylase - genetics</topic><topic>Cholesterol 7-alpha-Hydroxylase - physiology</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol, HDL - blood</topic><topic>Cholesterol, LDL - blood</topic><topic>Cholesteryl ester transfer protein</topic><topic>Cynomolgus</topic><topic>Cytoskeleton</topic><topic>Dihydrotestosterone</topic><topic>Dihydrotestosterone - pharmacology</topic><topic>Disorders of blood lipids. Hyperlipoproteinemia</topic><topic>DNA microarrays</topic><topic>Dose-Response Relationship, Drug</topic><topic>Extracellular matrix</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>High density</topic><topic>High density lipoprotein</topic><topic>Homeostasis</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Macaca fascicularis</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Metabolism</topic><topic>Monkeys</topic><topic>Monkeys &amp; apes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Particle Size</topic><topic>Primates</topic><topic>Protein turnover</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Synthesis</topic><topic>Transcription</topic><topic>Triglycerides</topic><topic>Vertebrates: endocrinology</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nantermet, Pascale</creatorcontrib><creatorcontrib>Harada, Shun-ichi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Cheng, Spring</creatorcontrib><creatorcontrib>Johnson, Colena</creatorcontrib><creatorcontrib>Yu, Yuanjiang</creatorcontrib><creatorcontrib>Kimme, Donald</creatorcontrib><creatorcontrib>Holder, Daniel</creatorcontrib><creatorcontrib>Hodor, Paul</creatorcontrib><creatorcontrib>Phillips, Robert</creatorcontrib><creatorcontrib>Ray, William J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nantermet, Pascale</au><au>Harada, Shun-ichi</au><au>Liu, Yuan</au><au>Cheng, Spring</au><au>Johnson, Colena</au><au>Yu, Yuanjiang</au><au>Kimme, Donald</au><au>Holder, Daniel</au><au>Hodor, Paul</au><au>Phillips, Robert</au><au>Ray, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>149</volume><issue>4</issue><spage>1551</spage><epage>1561</epage><pages>1551-1561</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P &lt; 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.</abstract><cop>Bethesda, MD</cop><pub>Endocrine Society</pub><pmid>18187556</pmid><doi>10.1210/en.2007-1151</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2008-04, Vol.149 (4), p.1551-1561
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_miscellaneous_70421801
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Adipogenesis
Adipose tissue
Adipose Tissue - metabolism
Androgens
Animals
Biological and medical sciences
Biopsy
Body Composition
Body fat
Cell adhesion
Cholesterol
Cholesterol 7-alpha-Hydroxylase - genetics
Cholesterol 7-alpha-Hydroxylase - physiology
Cholesterol Ester Transfer Proteins - genetics
Cholesterol, HDL - blood
Cholesterol, LDL - blood
Cholesteryl ester transfer protein
Cynomolgus
Cytoskeleton
Dihydrotestosterone
Dihydrotestosterone - pharmacology
Disorders of blood lipids. Hyperlipoproteinemia
DNA microarrays
Dose-Response Relationship, Drug
Extracellular matrix
Female
Fundamental and applied biological sciences. Psychology
Gene expression
Gene regulation
Gene silencing
Genes
High density
High density lipoprotein
Homeostasis
Lipid metabolism
Lipids
Lipoproteins
Liver
Liver - metabolism
Macaca fascicularis
Medical sciences
Metabolic diseases
Metabolism
Monkeys
Monkeys & apes
NMR
Nuclear magnetic resonance
Oligonucleotide Array Sequence Analysis
Particle Size
Primates
Protein turnover
Rats
Rats, Sprague-Dawley
Receptors, Cytoplasmic and Nuclear - genetics
Ribonucleic acid
RNA
Synthesis
Transcription
Triglycerides
Vertebrates: endocrinology
β-Catenin
title Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20Analyses%20in%20Cynomolgus%20Monkeys%20Provides%20Mechanistic%20Insight%20into%20High-Density%20Lipoprotein-Cholesterol%20Reduction%20by%20Androgens%20in%20Primates&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Nantermet,%20Pascale&rft.date=2008-04-01&rft.volume=149&rft.issue=4&rft.spage=1551&rft.epage=1561&rft.pages=1551-1561&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2007-1151&rft_dat=%3Cproquest_cross%3E3130591535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130591535&rft_id=info:pmid/18187556&rft_oup_id=10.1210/en.2007-1151&rfr_iscdi=true