Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates
Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) o...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2008-04, Vol.149 (4), p.1551-1561 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1561 |
---|---|
container_issue | 4 |
container_start_page | 1551 |
container_title | Endocrinology (Philadelphia) |
container_volume | 149 |
creator | Nantermet, Pascale Harada, Shun-ichi Liu, Yuan Cheng, Spring Johnson, Colena Yu, Yuanjiang Kimme, Donald Holder, Daniel Hodor, Paul Phillips, Robert Ray, William J |
description | Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P < 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction. |
doi_str_mv | 10.1210/en.2007-1151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70421801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2007-1151</oup_id><sourcerecordid>3130591535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EokvhxhlFQpQLKZ7YTuJjtS1tpa2oEJwjrz2765K1g50g8k_4uTjdiEoIxMlfz8w7M68JeQn0FAqg79GdFpRWOYCAR2QBkou8goo-JgtKgeVVUVRH5FmMd-nIOWdPyRHUUFdClAvy8xIdZhc_uoAxWu-yM6faMWLMrMuWo_N7326HmN149xXHmN0G_92a9HyDeqecjb3V2bWLdrvrU0jvs6u0zc8xXfVjtrKd74Lv0bp8ufMtxh6Db7NPaAbdT3rrMUma4LcpYtK8DXaveozPyZONaiO-mNdj8uXDxeflVb76eHm9PFvlmgve56VkGmEjJZRrw6FkiLzim5qDUrJEbSTUpq7BgCmRGYVcrgWVlRYlN4pRdkxODnlTmd-GVF-zt1Fj2yqHfohNRXkBdRrk_0CQspLsPuPrP8A7P4Q01tgwYFRIEEwk6t2B0sHHGHDTdFPnYWyANpOxDbpmMraZjE34qznpsN6jeYBnJxPwZgZU1KrdBOW0jb-5goJkIKfq3h44P3T_ksxnSXYg0Rmvg3V4_0keuvlrob8A9qPKIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130591535</pqid></control><display><type>article</type><title>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Nantermet, Pascale ; Harada, Shun-ichi ; Liu, Yuan ; Cheng, Spring ; Johnson, Colena ; Yu, Yuanjiang ; Kimme, Donald ; Holder, Daniel ; Hodor, Paul ; Phillips, Robert ; Ray, William J</creator><creatorcontrib>Nantermet, Pascale ; Harada, Shun-ichi ; Liu, Yuan ; Cheng, Spring ; Johnson, Colena ; Yu, Yuanjiang ; Kimme, Donald ; Holder, Daniel ; Hodor, Paul ; Phillips, Robert ; Ray, William J</creatorcontrib><description>Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P < 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2007-1151</identifier><identifier>PMID: 18187556</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Bethesda, MD: Endocrine Society</publisher><subject>Adipogenesis ; Adipose tissue ; Adipose Tissue - metabolism ; Androgens ; Animals ; Biological and medical sciences ; Biopsy ; Body Composition ; Body fat ; Cell adhesion ; Cholesterol ; Cholesterol 7-alpha-Hydroxylase - genetics ; Cholesterol 7-alpha-Hydroxylase - physiology ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol, HDL - blood ; Cholesterol, LDL - blood ; Cholesteryl ester transfer protein ; Cynomolgus ; Cytoskeleton ; Dihydrotestosterone ; Dihydrotestosterone - pharmacology ; Disorders of blood lipids. Hyperlipoproteinemia ; DNA microarrays ; Dose-Response Relationship, Drug ; Extracellular matrix ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene regulation ; Gene silencing ; Genes ; High density ; High density lipoprotein ; Homeostasis ; Lipid metabolism ; Lipids ; Lipoproteins ; Liver ; Liver - metabolism ; Macaca fascicularis ; Medical sciences ; Metabolic diseases ; Metabolism ; Monkeys ; Monkeys & apes ; NMR ; Nuclear magnetic resonance ; Oligonucleotide Array Sequence Analysis ; Particle Size ; Primates ; Protein turnover ; Rats ; Rats, Sprague-Dawley ; Receptors, Cytoplasmic and Nuclear - genetics ; Ribonucleic acid ; RNA ; Synthesis ; Transcription ; Triglycerides ; Vertebrates: endocrinology ; β-Catenin</subject><ispartof>Endocrinology (Philadelphia), 2008-04, Vol.149 (4), p.1551-1561</ispartof><rights>Copyright © 2008 by the Endocrine Society 2008</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008 by the Endocrine Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</citedby><cites>FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20193190$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18187556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nantermet, Pascale</creatorcontrib><creatorcontrib>Harada, Shun-ichi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Cheng, Spring</creatorcontrib><creatorcontrib>Johnson, Colena</creatorcontrib><creatorcontrib>Yu, Yuanjiang</creatorcontrib><creatorcontrib>Kimme, Donald</creatorcontrib><creatorcontrib>Holder, Daniel</creatorcontrib><creatorcontrib>Hodor, Paul</creatorcontrib><creatorcontrib>Phillips, Robert</creatorcontrib><creatorcontrib>Ray, William J</creatorcontrib><title>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P < 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.</description><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Androgens</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Body Composition</subject><subject>Body fat</subject><subject>Cell adhesion</subject><subject>Cholesterol</subject><subject>Cholesterol 7-alpha-Hydroxylase - genetics</subject><subject>Cholesterol 7-alpha-Hydroxylase - physiology</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol, HDL - blood</subject><subject>Cholesterol, LDL - blood</subject><subject>Cholesteryl ester transfer protein</subject><subject>Cynomolgus</subject><subject>Cytoskeleton</subject><subject>Dihydrotestosterone</subject><subject>Dihydrotestosterone - pharmacology</subject><subject>Disorders of blood lipids. Hyperlipoproteinemia</subject><subject>DNA microarrays</subject><subject>Dose-Response Relationship, Drug</subject><subject>Extracellular matrix</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>High density</subject><subject>High density lipoprotein</subject><subject>Homeostasis</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Macaca fascicularis</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Metabolism</subject><subject>Monkeys</subject><subject>Monkeys & apes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Particle Size</subject><subject>Primates</subject><subject>Protein turnover</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Synthesis</subject><subject>Transcription</subject><subject>Triglycerides</subject><subject>Vertebrates: endocrinology</subject><subject>β-Catenin</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EokvhxhlFQpQLKZ7YTuJjtS1tpa2oEJwjrz2765K1g50g8k_4uTjdiEoIxMlfz8w7M68JeQn0FAqg79GdFpRWOYCAR2QBkou8goo-JgtKgeVVUVRH5FmMd-nIOWdPyRHUUFdClAvy8xIdZhc_uoAxWu-yM6faMWLMrMuWo_N7326HmN149xXHmN0G_92a9HyDeqecjb3V2bWLdrvrU0jvs6u0zc8xXfVjtrKd74Lv0bp8ufMtxh6Db7NPaAbdT3rrMUma4LcpYtK8DXaveozPyZONaiO-mNdj8uXDxeflVb76eHm9PFvlmgve56VkGmEjJZRrw6FkiLzim5qDUrJEbSTUpq7BgCmRGYVcrgWVlRYlN4pRdkxODnlTmd-GVF-zt1Fj2yqHfohNRXkBdRrk_0CQspLsPuPrP8A7P4Q01tgwYFRIEEwk6t2B0sHHGHDTdFPnYWyANpOxDbpmMraZjE34qznpsN6jeYBnJxPwZgZU1KrdBOW0jb-5goJkIKfq3h44P3T_ksxnSXYg0Rmvg3V4_0keuvlrob8A9qPKIQ</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Nantermet, Pascale</creator><creator>Harada, Shun-ichi</creator><creator>Liu, Yuan</creator><creator>Cheng, Spring</creator><creator>Johnson, Colena</creator><creator>Yu, Yuanjiang</creator><creator>Kimme, Donald</creator><creator>Holder, Daniel</creator><creator>Hodor, Paul</creator><creator>Phillips, Robert</creator><creator>Ray, William J</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</title><author>Nantermet, Pascale ; Harada, Shun-ichi ; Liu, Yuan ; Cheng, Spring ; Johnson, Colena ; Yu, Yuanjiang ; Kimme, Donald ; Holder, Daniel ; Hodor, Paul ; Phillips, Robert ; Ray, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-693ce1f9916bd4163ee474f841aa96ecd918d881d1d6e3dae49b5097c564da303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Androgens</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Body Composition</topic><topic>Body fat</topic><topic>Cell adhesion</topic><topic>Cholesterol</topic><topic>Cholesterol 7-alpha-Hydroxylase - genetics</topic><topic>Cholesterol 7-alpha-Hydroxylase - physiology</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol, HDL - blood</topic><topic>Cholesterol, LDL - blood</topic><topic>Cholesteryl ester transfer protein</topic><topic>Cynomolgus</topic><topic>Cytoskeleton</topic><topic>Dihydrotestosterone</topic><topic>Dihydrotestosterone - pharmacology</topic><topic>Disorders of blood lipids. Hyperlipoproteinemia</topic><topic>DNA microarrays</topic><topic>Dose-Response Relationship, Drug</topic><topic>Extracellular matrix</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>High density</topic><topic>High density lipoprotein</topic><topic>Homeostasis</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Macaca fascicularis</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Metabolism</topic><topic>Monkeys</topic><topic>Monkeys & apes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Particle Size</topic><topic>Primates</topic><topic>Protein turnover</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Synthesis</topic><topic>Transcription</topic><topic>Triglycerides</topic><topic>Vertebrates: endocrinology</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nantermet, Pascale</creatorcontrib><creatorcontrib>Harada, Shun-ichi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Cheng, Spring</creatorcontrib><creatorcontrib>Johnson, Colena</creatorcontrib><creatorcontrib>Yu, Yuanjiang</creatorcontrib><creatorcontrib>Kimme, Donald</creatorcontrib><creatorcontrib>Holder, Daniel</creatorcontrib><creatorcontrib>Hodor, Paul</creatorcontrib><creatorcontrib>Phillips, Robert</creatorcontrib><creatorcontrib>Ray, William J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nantermet, Pascale</au><au>Harada, Shun-ichi</au><au>Liu, Yuan</au><au>Cheng, Spring</au><au>Johnson, Colena</au><au>Yu, Yuanjiang</au><au>Kimme, Donald</au><au>Holder, Daniel</au><au>Hodor, Paul</au><au>Phillips, Robert</au><au>Ray, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>149</volume><issue>4</issue><spage>1551</spage><epage>1561</epage><pages>1551-1561</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Androgens increase muscle mass, decrease fat mass, and reduce high-density lipoprotein cholesterol (HDL), but the relationship between body composition, lipoprotein metabolism, and androgens has not been explained. Here we treated ovariectomized cynomolgus monkeys with 5α-dihydrotestosterone (DHT) or vehicle for 14 d and measured lipoprotein and triglycerides. Nuclear magnetic resonance analysis revealed that DHT dose-dependently reduced the cholesterol content of large HDL particles and decreased mean HDL particle size (P < 0.01) and also tended to lower low-density lipoprotein cholesterol without altering other lipoprotein particles. Liver and visceral fat biopsies taken before and after DHT treatment for 1 or 14 d were analyzed by genome-wide microarrays. In liver, DHT did not alter the expression of most genes involved in cholesterol synthesis or uptake but rapidly increased small heterodimer partner (SHP) RNA, along with concomitant repression of CYP7A1, a target of SHP transcriptional repression and the rate-limiting enzyme in bile acid synthesis. DHT regulation of SHP and CYP7A1 also occurs in rats, indicating a conserved mechanism. In adipose tissue, pathway analyses suggested coordinate regulation of adipogenesis, tissue remodeling, and lipid homeostasis. Genes encoding IGF-I and β-catenin were induced, as were extracellular matrix, cell adhesion, and cytoskeletal components, whereas there was consistent down-regulation of genes involved in triacylglycerol metabolism. Interestingly, cholesterol ester transfer protein RNA was induced rapidly in monkey adipose tissue, whereas its inhibitor apolipoprotein CI was repressed. These data provide insight into the androgenic regulation of lipoprotein homeostasis and suggest that changes in adipose lipoprotein metabolism could contribute to HDL cholesterol reduction.</abstract><cop>Bethesda, MD</cop><pub>Endocrine Society</pub><pmid>18187556</pmid><doi>10.1210/en.2007-1151</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2008-04, Vol.149 (4), p.1551-1561 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_70421801 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Adipogenesis Adipose tissue Adipose Tissue - metabolism Androgens Animals Biological and medical sciences Biopsy Body Composition Body fat Cell adhesion Cholesterol Cholesterol 7-alpha-Hydroxylase - genetics Cholesterol 7-alpha-Hydroxylase - physiology Cholesterol Ester Transfer Proteins - genetics Cholesterol, HDL - blood Cholesterol, LDL - blood Cholesteryl ester transfer protein Cynomolgus Cytoskeleton Dihydrotestosterone Dihydrotestosterone - pharmacology Disorders of blood lipids. Hyperlipoproteinemia DNA microarrays Dose-Response Relationship, Drug Extracellular matrix Female Fundamental and applied biological sciences. Psychology Gene expression Gene regulation Gene silencing Genes High density High density lipoprotein Homeostasis Lipid metabolism Lipids Lipoproteins Liver Liver - metabolism Macaca fascicularis Medical sciences Metabolic diseases Metabolism Monkeys Monkeys & apes NMR Nuclear magnetic resonance Oligonucleotide Array Sequence Analysis Particle Size Primates Protein turnover Rats Rats, Sprague-Dawley Receptors, Cytoplasmic and Nuclear - genetics Ribonucleic acid RNA Synthesis Transcription Triglycerides Vertebrates: endocrinology β-Catenin |
title | Gene Expression Analyses in Cynomolgus Monkeys Provides Mechanistic Insight into High-Density Lipoprotein-Cholesterol Reduction by Androgens in Primates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20Analyses%20in%20Cynomolgus%20Monkeys%20Provides%20Mechanistic%20Insight%20into%20High-Density%20Lipoprotein-Cholesterol%20Reduction%20by%20Androgens%20in%20Primates&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Nantermet,%20Pascale&rft.date=2008-04-01&rft.volume=149&rft.issue=4&rft.spage=1551&rft.epage=1561&rft.pages=1551-1561&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2007-1151&rft_dat=%3Cproquest_cross%3E3130591535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130591535&rft_id=info:pmid/18187556&rft_oup_id=10.1210/en.2007-1151&rfr_iscdi=true |