Non-compact nucleocapsid protein multimers in influenza-virus-infected cells

We have previously shown that protease-resistant and highly immunoreactive compact NP oligomers, dissociating at +80 °C and possessing properties of folded proteins, are post-translationally formed in influenza-virus-infected cells. In this study we demonstrate that, in addition to compact NP oligom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2007-05, Vol.152 (5), p.981-988
Hauptverfasser: Prokudina, E. N, Semenova, N. P, Chumakov, V. M, Grigorieva, T. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue 5
container_start_page 981
container_title Archives of virology
container_volume 152
creator Prokudina, E. N
Semenova, N. P
Chumakov, V. M
Grigorieva, T. A
description We have previously shown that protease-resistant and highly immunoreactive compact NP oligomers, dissociating at +80 °C and possessing properties of folded proteins, are post-translationally formed in influenza-virus-infected cells. In this study we demonstrate that, in addition to compact NP oligomers, incompletely folded NP multimers are detected intracellularly by SDS/PAGE carried out under weak dissociating conditions. In cells infected with avian, human A(H2N2), and human A(H3N2) viruses, NP multimers are detected in the stacking gel of SDS/PAGE as retarded and loose structures dissociating at +50 °C. NP multimers are more sensitive to proteolysis than NP oligomers, but they are more resistant to proteolysis than NP monomers. In contrast to compact NP oligomers, NP multimers possess a weak immunoreactivity to some monoclonal antibodies. Pulse-chase experiments have shown that NP multimers appear at early stages of NP synthesis and are partially converted post-translationally into faster-migrating compact NP oligomers. In the course of infection, the excess NP multimers not converted into compact NP oligomers accumulate in cells and degrade. Under weak dissociating conditions, intracellular NP multimers are relatively stable in avian, human A(H2N2) and human A(H3N2) viruses and unstable in human A(H1N1) viruses, dissociating into monomers. NP multimers presumably serve to bring nascent unfolded NP molecules into close contact with each other for further oligomerization, to protect NP monomers from proteolysis, and to serve as intermediates in the posttranslational folding of NP.
doi_str_mv 10.1007/s00705-006-0911-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70421512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1261197671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a54d2eca169cc9fcbff139843cdff33a3b8d077099f33b07e7f673575abd9c9e3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWqs_wI0OLtxF701mJpOlFF9QdKFdh0wmkSnzqMmMYH-9KS0IbrpJOOG7h3NzCLlAuEUAcRfiARkFyClIRLo-IBNMOaOFkMUhmQCHlBY5FCfkNIQlQHzg2TE5QcEwRy4nZP7ad9T07UqbIelG09je6FWoq2Tl-8HWXdKOzVC31ockirpzzWi7tabftR8DjdqawVaJsU0TzsiR002w57t7ShaPDx-zZzp_e3qZ3c-pSZENVGdpxazRmEtjpDOlczFLkXJTOce55mVRgRAgZVQlCCtcLngmMl1W0kjLp-Rm6xszfo02DKqtwyaB7mw_BiUgZZgh2wsyZCDTFPeDwFFmICN4_Q9c9qPv4rYbMy4hfn-EcAsZ34fgrVMrX7fa_ygEtWlObZtTsTm1aU6t48zlzngsW1v9TeyqisDVFnC6V_rT10Et3hkgj1YCMfb-C7uDnW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212390432</pqid></control><display><type>article</type><title>Non-compact nucleocapsid protein multimers in influenza-virus-infected cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Prokudina, E. N ; Semenova, N. P ; Chumakov, V. M ; Grigorieva, T. A</creator><creatorcontrib>Prokudina, E. N ; Semenova, N. P ; Chumakov, V. M ; Grigorieva, T. A</creatorcontrib><description>We have previously shown that protease-resistant and highly immunoreactive compact NP oligomers, dissociating at +80 °C and possessing properties of folded proteins, are post-translationally formed in influenza-virus-infected cells. In this study we demonstrate that, in addition to compact NP oligomers, incompletely folded NP multimers are detected intracellularly by SDS/PAGE carried out under weak dissociating conditions. In cells infected with avian, human A(H2N2), and human A(H3N2) viruses, NP multimers are detected in the stacking gel of SDS/PAGE as retarded and loose structures dissociating at +50 °C. NP multimers are more sensitive to proteolysis than NP oligomers, but they are more resistant to proteolysis than NP monomers. In contrast to compact NP oligomers, NP multimers possess a weak immunoreactivity to some monoclonal antibodies. Pulse-chase experiments have shown that NP multimers appear at early stages of NP synthesis and are partially converted post-translationally into faster-migrating compact NP oligomers. In the course of infection, the excess NP multimers not converted into compact NP oligomers accumulate in cells and degrade. Under weak dissociating conditions, intracellular NP multimers are relatively stable in avian, human A(H2N2) and human A(H3N2) viruses and unstable in human A(H1N1) viruses, dissociating into monomers. NP multimers presumably serve to bring nascent unfolded NP molecules into close contact with each other for further oligomerization, to protect NP monomers from proteolysis, and to serve as intermediates in the posttranslational folding of NP.</description><identifier>ISSN: 0304-8608</identifier><identifier>EISSN: 1432-8798</identifier><identifier>DOI: 10.1007/s00705-006-0911-z</identifier><identifier>PMID: 17216139</identifier><language>eng</language><publisher>Austria: Vienna : Springer-Verlag</publisher><subject>Animals ; Antibodies, Monoclonal - immunology ; Antibodies, Viral - immunology ; Antibody Affinity ; Biosynthesis ; Cell Line ; Chemical bonds ; Dogs ; Electrophoresis, Polyacrylamide Gel ; Experiments ; Influenza A Virus, H2N2 Subtype - immunology ; Influenza A Virus, H3N2 Subtype - immunology ; Influenza virus ; Monoclonal antibodies ; Nucleocapsid Proteins - chemistry ; Nucleocapsid Proteins - immunology ; Nucleocapsid Proteins - metabolism ; Orthomyxoviridae Infections - virology ; Protein Conformation ; Proteins ; Virology ; Viruses</subject><ispartof>Archives of virology, 2007-05, Vol.152 (5), p.981-988</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a54d2eca169cc9fcbff139843cdff33a3b8d077099f33b07e7f673575abd9c9e3</citedby><cites>FETCH-LOGICAL-c412t-a54d2eca169cc9fcbff139843cdff33a3b8d077099f33b07e7f673575abd9c9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17216139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prokudina, E. N</creatorcontrib><creatorcontrib>Semenova, N. P</creatorcontrib><creatorcontrib>Chumakov, V. M</creatorcontrib><creatorcontrib>Grigorieva, T. A</creatorcontrib><title>Non-compact nucleocapsid protein multimers in influenza-virus-infected cells</title><title>Archives of virology</title><addtitle>Arch Virol</addtitle><description>We have previously shown that protease-resistant and highly immunoreactive compact NP oligomers, dissociating at +80 °C and possessing properties of folded proteins, are post-translationally formed in influenza-virus-infected cells. In this study we demonstrate that, in addition to compact NP oligomers, incompletely folded NP multimers are detected intracellularly by SDS/PAGE carried out under weak dissociating conditions. In cells infected with avian, human A(H2N2), and human A(H3N2) viruses, NP multimers are detected in the stacking gel of SDS/PAGE as retarded and loose structures dissociating at +50 °C. NP multimers are more sensitive to proteolysis than NP oligomers, but they are more resistant to proteolysis than NP monomers. In contrast to compact NP oligomers, NP multimers possess a weak immunoreactivity to some monoclonal antibodies. Pulse-chase experiments have shown that NP multimers appear at early stages of NP synthesis and are partially converted post-translationally into faster-migrating compact NP oligomers. In the course of infection, the excess NP multimers not converted into compact NP oligomers accumulate in cells and degrade. Under weak dissociating conditions, intracellular NP multimers are relatively stable in avian, human A(H2N2) and human A(H3N2) viruses and unstable in human A(H1N1) viruses, dissociating into monomers. NP multimers presumably serve to bring nascent unfolded NP molecules into close contact with each other for further oligomerization, to protect NP monomers from proteolysis, and to serve as intermediates in the posttranslational folding of NP.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Viral - immunology</subject><subject>Antibody Affinity</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Chemical bonds</subject><subject>Dogs</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Experiments</subject><subject>Influenza A Virus, H2N2 Subtype - immunology</subject><subject>Influenza A Virus, H3N2 Subtype - immunology</subject><subject>Influenza virus</subject><subject>Monoclonal antibodies</subject><subject>Nucleocapsid Proteins - chemistry</subject><subject>Nucleocapsid Proteins - immunology</subject><subject>Nucleocapsid Proteins - metabolism</subject><subject>Orthomyxoviridae Infections - virology</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Virology</subject><subject>Viruses</subject><issn>0304-8608</issn><issn>1432-8798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtLAzEUhYMoWqs_wI0OLtxF701mJpOlFF9QdKFdh0wmkSnzqMmMYH-9KS0IbrpJOOG7h3NzCLlAuEUAcRfiARkFyClIRLo-IBNMOaOFkMUhmQCHlBY5FCfkNIQlQHzg2TE5QcEwRy4nZP7ad9T07UqbIelG09je6FWoq2Tl-8HWXdKOzVC31ockirpzzWi7tabftR8DjdqawVaJsU0TzsiR002w57t7ShaPDx-zZzp_e3qZ3c-pSZENVGdpxazRmEtjpDOlczFLkXJTOce55mVRgRAgZVQlCCtcLngmMl1W0kjLp-Rm6xszfo02DKqtwyaB7mw_BiUgZZgh2wsyZCDTFPeDwFFmICN4_Q9c9qPv4rYbMy4hfn-EcAsZ34fgrVMrX7fa_ygEtWlObZtTsTm1aU6t48zlzngsW1v9TeyqisDVFnC6V_rT10Et3hkgj1YCMfb-C7uDnW0</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Prokudina, E. N</creator><creator>Semenova, N. P</creator><creator>Chumakov, V. M</creator><creator>Grigorieva, T. A</creator><general>Vienna : Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070501</creationdate><title>Non-compact nucleocapsid protein multimers in influenza-virus-infected cells</title><author>Prokudina, E. N ; Semenova, N. P ; Chumakov, V. M ; Grigorieva, T. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a54d2eca169cc9fcbff139843cdff33a3b8d077099f33b07e7f673575abd9c9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Viral - immunology</topic><topic>Antibody Affinity</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Chemical bonds</topic><topic>Dogs</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Experiments</topic><topic>Influenza A Virus, H2N2 Subtype - immunology</topic><topic>Influenza A Virus, H3N2 Subtype - immunology</topic><topic>Influenza virus</topic><topic>Monoclonal antibodies</topic><topic>Nucleocapsid Proteins - chemistry</topic><topic>Nucleocapsid Proteins - immunology</topic><topic>Nucleocapsid Proteins - metabolism</topic><topic>Orthomyxoviridae Infections - virology</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokudina, E. N</creatorcontrib><creatorcontrib>Semenova, N. P</creatorcontrib><creatorcontrib>Chumakov, V. M</creatorcontrib><creatorcontrib>Grigorieva, T. A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prokudina, E. N</au><au>Semenova, N. P</au><au>Chumakov, V. M</au><au>Grigorieva, T. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-compact nucleocapsid protein multimers in influenza-virus-infected cells</atitle><jtitle>Archives of virology</jtitle><addtitle>Arch Virol</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>152</volume><issue>5</issue><spage>981</spage><epage>988</epage><pages>981-988</pages><issn>0304-8608</issn><eissn>1432-8798</eissn><abstract>We have previously shown that protease-resistant and highly immunoreactive compact NP oligomers, dissociating at +80 °C and possessing properties of folded proteins, are post-translationally formed in influenza-virus-infected cells. In this study we demonstrate that, in addition to compact NP oligomers, incompletely folded NP multimers are detected intracellularly by SDS/PAGE carried out under weak dissociating conditions. In cells infected with avian, human A(H2N2), and human A(H3N2) viruses, NP multimers are detected in the stacking gel of SDS/PAGE as retarded and loose structures dissociating at +50 °C. NP multimers are more sensitive to proteolysis than NP oligomers, but they are more resistant to proteolysis than NP monomers. In contrast to compact NP oligomers, NP multimers possess a weak immunoreactivity to some monoclonal antibodies. Pulse-chase experiments have shown that NP multimers appear at early stages of NP synthesis and are partially converted post-translationally into faster-migrating compact NP oligomers. In the course of infection, the excess NP multimers not converted into compact NP oligomers accumulate in cells and degrade. Under weak dissociating conditions, intracellular NP multimers are relatively stable in avian, human A(H2N2) and human A(H3N2) viruses and unstable in human A(H1N1) viruses, dissociating into monomers. NP multimers presumably serve to bring nascent unfolded NP molecules into close contact with each other for further oligomerization, to protect NP monomers from proteolysis, and to serve as intermediates in the posttranslational folding of NP.</abstract><cop>Austria</cop><pub>Vienna : Springer-Verlag</pub><pmid>17216139</pmid><doi>10.1007/s00705-006-0911-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8608
ispartof Archives of virology, 2007-05, Vol.152 (5), p.981-988
issn 0304-8608
1432-8798
language eng
recordid cdi_proquest_miscellaneous_70421512
source MEDLINE; SpringerLink Journals
subjects Animals
Antibodies, Monoclonal - immunology
Antibodies, Viral - immunology
Antibody Affinity
Biosynthesis
Cell Line
Chemical bonds
Dogs
Electrophoresis, Polyacrylamide Gel
Experiments
Influenza A Virus, H2N2 Subtype - immunology
Influenza A Virus, H3N2 Subtype - immunology
Influenza virus
Monoclonal antibodies
Nucleocapsid Proteins - chemistry
Nucleocapsid Proteins - immunology
Nucleocapsid Proteins - metabolism
Orthomyxoviridae Infections - virology
Protein Conformation
Proteins
Virology
Viruses
title Non-compact nucleocapsid protein multimers in influenza-virus-infected cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-compact%20nucleocapsid%20protein%20multimers%20in%20influenza-virus-infected%20cells&rft.jtitle=Archives%20of%20virology&rft.au=Prokudina,%20E.%20N&rft.date=2007-05-01&rft.volume=152&rft.issue=5&rft.spage=981&rft.epage=988&rft.pages=981-988&rft.issn=0304-8608&rft.eissn=1432-8798&rft_id=info:doi/10.1007/s00705-006-0911-z&rft_dat=%3Cproquest_cross%3E1261197671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212390432&rft_id=info:pmid/17216139&rfr_iscdi=true