Home-built integrated microarray system (IMAS). A three-laser confocal fluorescence scanner coupled with a microarray printer

Microarray technology covers the urgent need to exploit the accumulated genetic information from large-scale sequencing projects and facilitate investigations on a genome-wide scale. Although most applications focus on DNA microarrays, the technology has expanded to microarrays of proteins, peptides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2008-03, Vol.390 (6), p.1563-1573
Hauptverfasser: Tragoulias, Sotirios S, Obeid, Pierre J, Tataridis, Ioannis E, Christopoulos, Theodore K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1573
container_issue 6
container_start_page 1563
container_title Analytical and bioanalytical chemistry
container_volume 390
creator Tragoulias, Sotirios S
Obeid, Pierre J
Tataridis, Ioannis E
Christopoulos, Theodore K
description Microarray technology covers the urgent need to exploit the accumulated genetic information from large-scale sequencing projects and facilitate investigations on a genome-wide scale. Although most applications focus on DNA microarrays, the technology has expanded to microarrays of proteins, peptides, carbohydrates, and small molecules aiming either at detection/quantification of biomolecules or investigation of biomolecular interactions in a massively parallel manner. Microarray experiments require two specialized instruments: An arrayer (or printer), for construction of microarrays, and a readout instrument (scanner). We have designed, constructed, and characterized the first integrated microarray system (IMAS) that combines the functions of a microarrayer and a three-laser confocal fluorescence scanner into a single instrument and provides excellent flexibility for the researcher. The three-axis robotic system that moves the printing head carrying multiple pins for arraying is also used for moving the microarray slide in front of a stationary optical system during scanning. Since the translation stages are the most expensive and crucial components of microarray printers and scanners, the proposed design reduces considerably the cost of the instrument and enhances remarkably its operative flexibility. Experiments were carried out at resolutions of 2.5, 5, 10, and 20 μm. The scanner detects 0.128 nmol L⁻¹ carboxyfluorescein (spots with diameters of 70 μm) corresponding to 1.8 molecules μm⁻². The linear range extends over 3.5 orders of magnitude (R ² = 0.997) and the dynamic range covers almost five orders of magnitude. DNA microarray model experiments were carried out, including staining with SYBR Green I and hybridization with oligonucleotides labeled with the fluorescent dyes Alexa 488, Alexa 594, and Alexa 633. [graphic removed]
doi_str_mv 10.1007/s00216-008-1842-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70417024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70417024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-731795117a9de14269a720611263b51ba1cbe713c2d416f6380410fb55b54ef73</originalsourceid><addsrcrecordid>eNqFkkFv2yAUx9HUae26fYBdWk5VeyDlgQ3OMarWJVKnHdKcESbPiSvbpGCrymHfvWSOup62E0j83g_e-0PIN-AT4FzfRs4FKMZ5waDIBIMP5AwUFEyonJ-87TNxSj7H-MQ55AWoT-QUCiGKZDgjv-e-RVYOddPTuutxE2yPa9rWLngbgt3TuI89tvR68XO2vJnQGe23AZE1NmKgzneVd7ahVTP4gNFh55BGZ7vuz-mwa5Ltpe631L6X7sLhsvCFfKxsE_HrcT0nq_vvj3dz9vDrx-Ju9sCcnOqeaQl6mgNoO10jZEJNrRZcAQglyxxKC65EDdKJdQaqUrLgGfCqzPMyz7DS8pxcjd5d8M8Dxt60dXpr09gO_RCNTrzmIvsvKIXUUqkigTCCqaUYA1YmtdTasDfAzSEcM4ZjUjjmEI6BVHNxlA9li-u_Fcc0EiBGIB7ms8FgnvwQujSZf1ovx6LKemM3oY5mtRQcZGJ0-gCZfAVOhKL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32373668</pqid></control><display><type>article</type><title>Home-built integrated microarray system (IMAS). A three-laser confocal fluorescence scanner coupled with a microarray printer</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Tragoulias, Sotirios S ; Obeid, Pierre J ; Tataridis, Ioannis E ; Christopoulos, Theodore K</creator><creatorcontrib>Tragoulias, Sotirios S ; Obeid, Pierre J ; Tataridis, Ioannis E ; Christopoulos, Theodore K</creatorcontrib><description>Microarray technology covers the urgent need to exploit the accumulated genetic information from large-scale sequencing projects and facilitate investigations on a genome-wide scale. Although most applications focus on DNA microarrays, the technology has expanded to microarrays of proteins, peptides, carbohydrates, and small molecules aiming either at detection/quantification of biomolecules or investigation of biomolecular interactions in a massively parallel manner. Microarray experiments require two specialized instruments: An arrayer (or printer), for construction of microarrays, and a readout instrument (scanner). We have designed, constructed, and characterized the first integrated microarray system (IMAS) that combines the functions of a microarrayer and a three-laser confocal fluorescence scanner into a single instrument and provides excellent flexibility for the researcher. The three-axis robotic system that moves the printing head carrying multiple pins for arraying is also used for moving the microarray slide in front of a stationary optical system during scanning. Since the translation stages are the most expensive and crucial components of microarray printers and scanners, the proposed design reduces considerably the cost of the instrument and enhances remarkably its operative flexibility. Experiments were carried out at resolutions of 2.5, 5, 10, and 20 μm. The scanner detects 0.128 nmol L⁻¹ carboxyfluorescein (spots with diameters of 70 μm) corresponding to 1.8 molecules μm⁻². The linear range extends over 3.5 orders of magnitude (R ² = 0.997) and the dynamic range covers almost five orders of magnitude. DNA microarray model experiments were carried out, including staining with SYBR Green I and hybridization with oligonucleotides labeled with the fluorescent dyes Alexa 488, Alexa 594, and Alexa 633. [graphic removed]</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-008-1842-1</identifier><identifier>PMID: 18228007</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analytical Chemistry ; Bioanalytical methods ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Fluoresceins - chemistry ; Food Science ; Home-built integrated system ; Laboratory Medicine ; Microarrays ; Molecular Structure ; Monitoring/Environmental Analysis ; Oligonucleotide Array Sequence Analysis - instrumentation ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Probes - genetics ; Organic Chemicals ; Original Paper ; Spectrometry, Fluorescence - instrumentation ; Spectrometry, Fluorescence - methods ; Time Factors</subject><ispartof>Analytical and bioanalytical chemistry, 2008-03, Vol.390 (6), p.1563-1573</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-731795117a9de14269a720611263b51ba1cbe713c2d416f6380410fb55b54ef73</citedby><cites>FETCH-LOGICAL-c397t-731795117a9de14269a720611263b51ba1cbe713c2d416f6380410fb55b54ef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-008-1842-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-008-1842-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18228007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tragoulias, Sotirios S</creatorcontrib><creatorcontrib>Obeid, Pierre J</creatorcontrib><creatorcontrib>Tataridis, Ioannis E</creatorcontrib><creatorcontrib>Christopoulos, Theodore K</creatorcontrib><title>Home-built integrated microarray system (IMAS). A three-laser confocal fluorescence scanner coupled with a microarray printer</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Microarray technology covers the urgent need to exploit the accumulated genetic information from large-scale sequencing projects and facilitate investigations on a genome-wide scale. Although most applications focus on DNA microarrays, the technology has expanded to microarrays of proteins, peptides, carbohydrates, and small molecules aiming either at detection/quantification of biomolecules or investigation of biomolecular interactions in a massively parallel manner. Microarray experiments require two specialized instruments: An arrayer (or printer), for construction of microarrays, and a readout instrument (scanner). We have designed, constructed, and characterized the first integrated microarray system (IMAS) that combines the functions of a microarrayer and a three-laser confocal fluorescence scanner into a single instrument and provides excellent flexibility for the researcher. The three-axis robotic system that moves the printing head carrying multiple pins for arraying is also used for moving the microarray slide in front of a stationary optical system during scanning. Since the translation stages are the most expensive and crucial components of microarray printers and scanners, the proposed design reduces considerably the cost of the instrument and enhances remarkably its operative flexibility. Experiments were carried out at resolutions of 2.5, 5, 10, and 20 μm. The scanner detects 0.128 nmol L⁻¹ carboxyfluorescein (spots with diameters of 70 μm) corresponding to 1.8 molecules μm⁻². The linear range extends over 3.5 orders of magnitude (R ² = 0.997) and the dynamic range covers almost five orders of magnitude. DNA microarray model experiments were carried out, including staining with SYBR Green I and hybridization with oligonucleotides labeled with the fluorescent dyes Alexa 488, Alexa 594, and Alexa 633. [graphic removed]</description><subject>Analytical Chemistry</subject><subject>Bioanalytical methods</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Fluoresceins - chemistry</subject><subject>Food Science</subject><subject>Home-built integrated system</subject><subject>Laboratory Medicine</subject><subject>Microarrays</subject><subject>Molecular Structure</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Probes - genetics</subject><subject>Organic Chemicals</subject><subject>Original Paper</subject><subject>Spectrometry, Fluorescence - instrumentation</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Time Factors</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv2yAUx9HUae26fYBdWk5VeyDlgQ3OMarWJVKnHdKcESbPiSvbpGCrymHfvWSOup62E0j83g_e-0PIN-AT4FzfRs4FKMZ5waDIBIMP5AwUFEyonJ-87TNxSj7H-MQ55AWoT-QUCiGKZDgjv-e-RVYOddPTuutxE2yPa9rWLngbgt3TuI89tvR68XO2vJnQGe23AZE1NmKgzneVd7ahVTP4gNFh55BGZ7vuz-mwa5Ltpe631L6X7sLhsvCFfKxsE_HrcT0nq_vvj3dz9vDrx-Ju9sCcnOqeaQl6mgNoO10jZEJNrRZcAQglyxxKC65EDdKJdQaqUrLgGfCqzPMyz7DS8pxcjd5d8M8Dxt60dXpr09gO_RCNTrzmIvsvKIXUUqkigTCCqaUYA1YmtdTasDfAzSEcM4ZjUjjmEI6BVHNxlA9li-u_Fcc0EiBGIB7ms8FgnvwQujSZf1ovx6LKemM3oY5mtRQcZGJ0-gCZfAVOhKL8</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Tragoulias, Sotirios S</creator><creator>Obeid, Pierre J</creator><creator>Tataridis, Ioannis E</creator><creator>Christopoulos, Theodore K</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080301</creationdate><title>Home-built integrated microarray system (IMAS). A three-laser confocal fluorescence scanner coupled with a microarray printer</title><author>Tragoulias, Sotirios S ; Obeid, Pierre J ; Tataridis, Ioannis E ; Christopoulos, Theodore K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-731795117a9de14269a720611263b51ba1cbe713c2d416f6380410fb55b54ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical Chemistry</topic><topic>Bioanalytical methods</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Fluoresceins - chemistry</topic><topic>Food Science</topic><topic>Home-built integrated system</topic><topic>Laboratory Medicine</topic><topic>Microarrays</topic><topic>Molecular Structure</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Probes - genetics</topic><topic>Organic Chemicals</topic><topic>Original Paper</topic><topic>Spectrometry, Fluorescence - instrumentation</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tragoulias, Sotirios S</creatorcontrib><creatorcontrib>Obeid, Pierre J</creatorcontrib><creatorcontrib>Tataridis, Ioannis E</creatorcontrib><creatorcontrib>Christopoulos, Theodore K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tragoulias, Sotirios S</au><au>Obeid, Pierre J</au><au>Tataridis, Ioannis E</au><au>Christopoulos, Theodore K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Home-built integrated microarray system (IMAS). A three-laser confocal fluorescence scanner coupled with a microarray printer</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>390</volume><issue>6</issue><spage>1563</spage><epage>1573</epage><pages>1563-1573</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Microarray technology covers the urgent need to exploit the accumulated genetic information from large-scale sequencing projects and facilitate investigations on a genome-wide scale. Although most applications focus on DNA microarrays, the technology has expanded to microarrays of proteins, peptides, carbohydrates, and small molecules aiming either at detection/quantification of biomolecules or investigation of biomolecular interactions in a massively parallel manner. Microarray experiments require two specialized instruments: An arrayer (or printer), for construction of microarrays, and a readout instrument (scanner). We have designed, constructed, and characterized the first integrated microarray system (IMAS) that combines the functions of a microarrayer and a three-laser confocal fluorescence scanner into a single instrument and provides excellent flexibility for the researcher. The three-axis robotic system that moves the printing head carrying multiple pins for arraying is also used for moving the microarray slide in front of a stationary optical system during scanning. Since the translation stages are the most expensive and crucial components of microarray printers and scanners, the proposed design reduces considerably the cost of the instrument and enhances remarkably its operative flexibility. Experiments were carried out at resolutions of 2.5, 5, 10, and 20 μm. The scanner detects 0.128 nmol L⁻¹ carboxyfluorescein (spots with diameters of 70 μm) corresponding to 1.8 molecules μm⁻². The linear range extends over 3.5 orders of magnitude (R ² = 0.997) and the dynamic range covers almost five orders of magnitude. DNA microarray model experiments were carried out, including staining with SYBR Green I and hybridization with oligonucleotides labeled with the fluorescent dyes Alexa 488, Alexa 594, and Alexa 633. [graphic removed]</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18228007</pmid><doi>10.1007/s00216-008-1842-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2008-03, Vol.390 (6), p.1563-1573
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_70417024
source MEDLINE; SpringerNature Journals
subjects Analytical Chemistry
Bioanalytical methods
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Fluoresceins - chemistry
Food Science
Home-built integrated system
Laboratory Medicine
Microarrays
Molecular Structure
Monitoring/Environmental Analysis
Oligonucleotide Array Sequence Analysis - instrumentation
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Probes - genetics
Organic Chemicals
Original Paper
Spectrometry, Fluorescence - instrumentation
Spectrometry, Fluorescence - methods
Time Factors
title Home-built integrated microarray system (IMAS). A three-laser confocal fluorescence scanner coupled with a microarray printer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Home-built%20integrated%20microarray%20system%20(IMAS).%20A%20three-laser%20confocal%20fluorescence%20scanner%20coupled%20with%20a%20microarray%20printer&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Tragoulias,%20Sotirios%20S&rft.date=2008-03-01&rft.volume=390&rft.issue=6&rft.spage=1563&rft.epage=1573&rft.pages=1563-1573&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-008-1842-1&rft_dat=%3Cproquest_cross%3E70417024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32373668&rft_id=info:pmid/18228007&rfr_iscdi=true