Gripping-force identification using EEG and phase-demodulation approach

In this paper we investigate the fuzzy identification of brain-code during simple gripping-force control tasks. Since the synchronized oscillatory activity and the phase dynamics between the brain areas are two important mechanisms in the brain’s function and information transfer, we decided to exam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience research 2008-04, Vol.60 (4), p.389-396
Hauptverfasser: Logar, Vito, Škrjanc, Igor, Belič, Aleš, Karba, Rihard, Brežan, Simon, Koritnik, Blaž, Zidar, Janez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 4
container_start_page 389
container_title Neuroscience research
container_volume 60
creator Logar, Vito
Škrjanc, Igor
Belič, Aleš
Karba, Rihard
Brežan, Simon
Koritnik, Blaž
Zidar, Janez
description In this paper we investigate the fuzzy identification of brain-code during simple gripping-force control tasks. Since the synchronized oscillatory activity and the phase dynamics between the brain areas are two important mechanisms in the brain’s function and information transfer, we decided to examine whether it is possible to extract the encoded information from the EEG signals using the phase-demodulation approach. The EEG was measured during the performance of different visuomotor tasks and the information we were trying to decode was the gripping force as applied by the subjects. The study revealed that it is possible, by using simple beta-rhythm filtering, phase demodulation, principal component analysis and a fuzzy model, to estimate the gripping-force response by using EEG signals as the inputs for the proposed model. The presented study has shown that even though EEG signals represent a superposition of all the active neurons, it is still possible to decode some information about the current activity of the brain centers. Furthermore, the cross-validation showed that the information about the gripping force is encoded in a very similar way for all the examined subjects. Thus, the phase shifts of the EEG signals seem to have a key role during activity and information transfer in the brain, while the phase-demodulation method proved to be a crucial step in the signal processing.
doi_str_mv 10.1016/j.neures.2007.12.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70409884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168010207018640</els_id><sourcerecordid>70409884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-5f000acd6e07fda9c9e5c43bc41f83114d7c037f1b76862e62f42109758f5ba3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoSDYf_yAUn3qzMyNpLfkSKGG7CQRyyV1opVGiZdd2JTvQf18FL_TW0xzmeefjYewOoUHA9n7f9DQnyg0HUA3yBqA7YyvUitcaEb-xVcF0DQj8kl3lvAcA0UlxwS5RcymEViu23aY4jrF_r8OQHFXRUz_FEJ2d4tBXcy6tarPZVrb31fhhM9WejoOfDwtgxzEN1n3csPNgD5luT_Wavf3avD0-1S-v2-fHny-1E1pO9TqUI6zzLYEK3nauo7WTYuckBi0QpVcOhAq4U61uObU8SI7QqbUO650V1-zHMrZs_T1TnswxZkeHg-1pmLNRIKHTWhZQLqBLQ86JghlTPNr0xyCYL39mbxZ_5sufQW6KvxL7fpo_747k_4VOwgrwsABUnvyMlEx2kXpHPiZyk_FD_P-Gv4qig1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70409884</pqid></control><display><type>article</type><title>Gripping-force identification using EEG and phase-demodulation approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Logar, Vito ; Škrjanc, Igor ; Belič, Aleš ; Karba, Rihard ; Brežan, Simon ; Koritnik, Blaž ; Zidar, Janez</creator><creatorcontrib>Logar, Vito ; Škrjanc, Igor ; Belič, Aleš ; Karba, Rihard ; Brežan, Simon ; Koritnik, Blaž ; Zidar, Janez</creatorcontrib><description>In this paper we investigate the fuzzy identification of brain-code during simple gripping-force control tasks. Since the synchronized oscillatory activity and the phase dynamics between the brain areas are two important mechanisms in the brain’s function and information transfer, we decided to examine whether it is possible to extract the encoded information from the EEG signals using the phase-demodulation approach. The EEG was measured during the performance of different visuomotor tasks and the information we were trying to decode was the gripping force as applied by the subjects. The study revealed that it is possible, by using simple beta-rhythm filtering, phase demodulation, principal component analysis and a fuzzy model, to estimate the gripping-force response by using EEG signals as the inputs for the proposed model. The presented study has shown that even though EEG signals represent a superposition of all the active neurons, it is still possible to decode some information about the current activity of the brain centers. Furthermore, the cross-validation showed that the information about the gripping force is encoded in a very similar way for all the examined subjects. Thus, the phase shifts of the EEG signals seem to have a key role during activity and information transfer in the brain, while the phase-demodulation method proved to be a crucial step in the signal processing.</description><identifier>ISSN: 0168-0102</identifier><identifier>EISSN: 1872-8111</identifier><identifier>DOI: 10.1016/j.neures.2007.12.009</identifier><identifier>PMID: 18243387</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Adult ; Brain - physiology ; Brain Mapping ; EEG ; Electroencephalography ; Female ; Force estimation ; Fuzzy Logic ; Hand Strength - physiology ; Humans ; Informational integration ; Male ; Models, Neurological ; Phase demodulation ; Signal Processing, Computer-Assisted ; Task Performance and Analysis</subject><ispartof>Neuroscience research, 2008-04, Vol.60 (4), p.389-396</ispartof><rights>2007 Elsevier Ireland Ltd and the Japan Neuroscience Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-5f000acd6e07fda9c9e5c43bc41f83114d7c037f1b76862e62f42109758f5ba3</citedby><cites>FETCH-LOGICAL-c384t-5f000acd6e07fda9c9e5c43bc41f83114d7c037f1b76862e62f42109758f5ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neures.2007.12.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18243387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Logar, Vito</creatorcontrib><creatorcontrib>Škrjanc, Igor</creatorcontrib><creatorcontrib>Belič, Aleš</creatorcontrib><creatorcontrib>Karba, Rihard</creatorcontrib><creatorcontrib>Brežan, Simon</creatorcontrib><creatorcontrib>Koritnik, Blaž</creatorcontrib><creatorcontrib>Zidar, Janez</creatorcontrib><title>Gripping-force identification using EEG and phase-demodulation approach</title><title>Neuroscience research</title><addtitle>Neurosci Res</addtitle><description>In this paper we investigate the fuzzy identification of brain-code during simple gripping-force control tasks. Since the synchronized oscillatory activity and the phase dynamics between the brain areas are two important mechanisms in the brain’s function and information transfer, we decided to examine whether it is possible to extract the encoded information from the EEG signals using the phase-demodulation approach. The EEG was measured during the performance of different visuomotor tasks and the information we were trying to decode was the gripping force as applied by the subjects. The study revealed that it is possible, by using simple beta-rhythm filtering, phase demodulation, principal component analysis and a fuzzy model, to estimate the gripping-force response by using EEG signals as the inputs for the proposed model. The presented study has shown that even though EEG signals represent a superposition of all the active neurons, it is still possible to decode some information about the current activity of the brain centers. Furthermore, the cross-validation showed that the information about the gripping force is encoded in a very similar way for all the examined subjects. Thus, the phase shifts of the EEG signals seem to have a key role during activity and information transfer in the brain, while the phase-demodulation method proved to be a crucial step in the signal processing.</description><subject>Adult</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Force estimation</subject><subject>Fuzzy Logic</subject><subject>Hand Strength - physiology</subject><subject>Humans</subject><subject>Informational integration</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Phase demodulation</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Task Performance and Analysis</subject><issn>0168-0102</issn><issn>1872-8111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVoSDYf_yAUn3qzMyNpLfkSKGG7CQRyyV1opVGiZdd2JTvQf18FL_TW0xzmeefjYewOoUHA9n7f9DQnyg0HUA3yBqA7YyvUitcaEb-xVcF0DQj8kl3lvAcA0UlxwS5RcymEViu23aY4jrF_r8OQHFXRUz_FEJ2d4tBXcy6tarPZVrb31fhhM9WejoOfDwtgxzEN1n3csPNgD5luT_Wavf3avD0-1S-v2-fHny-1E1pO9TqUI6zzLYEK3nauo7WTYuckBi0QpVcOhAq4U61uObU8SI7QqbUO650V1-zHMrZs_T1TnswxZkeHg-1pmLNRIKHTWhZQLqBLQ86JghlTPNr0xyCYL39mbxZ_5sufQW6KvxL7fpo_747k_4VOwgrwsABUnvyMlEx2kXpHPiZyk_FD_P-Gv4qig1g</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Logar, Vito</creator><creator>Škrjanc, Igor</creator><creator>Belič, Aleš</creator><creator>Karba, Rihard</creator><creator>Brežan, Simon</creator><creator>Koritnik, Blaž</creator><creator>Zidar, Janez</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Gripping-force identification using EEG and phase-demodulation approach</title><author>Logar, Vito ; Škrjanc, Igor ; Belič, Aleš ; Karba, Rihard ; Brežan, Simon ; Koritnik, Blaž ; Zidar, Janez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-5f000acd6e07fda9c9e5c43bc41f83114d7c037f1b76862e62f42109758f5ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Force estimation</topic><topic>Fuzzy Logic</topic><topic>Hand Strength - physiology</topic><topic>Humans</topic><topic>Informational integration</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Phase demodulation</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Task Performance and Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logar, Vito</creatorcontrib><creatorcontrib>Škrjanc, Igor</creatorcontrib><creatorcontrib>Belič, Aleš</creatorcontrib><creatorcontrib>Karba, Rihard</creatorcontrib><creatorcontrib>Brežan, Simon</creatorcontrib><creatorcontrib>Koritnik, Blaž</creatorcontrib><creatorcontrib>Zidar, Janez</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logar, Vito</au><au>Škrjanc, Igor</au><au>Belič, Aleš</au><au>Karba, Rihard</au><au>Brežan, Simon</au><au>Koritnik, Blaž</au><au>Zidar, Janez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gripping-force identification using EEG and phase-demodulation approach</atitle><jtitle>Neuroscience research</jtitle><addtitle>Neurosci Res</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>60</volume><issue>4</issue><spage>389</spage><epage>396</epage><pages>389-396</pages><issn>0168-0102</issn><eissn>1872-8111</eissn><abstract>In this paper we investigate the fuzzy identification of brain-code during simple gripping-force control tasks. Since the synchronized oscillatory activity and the phase dynamics between the brain areas are two important mechanisms in the brain’s function and information transfer, we decided to examine whether it is possible to extract the encoded information from the EEG signals using the phase-demodulation approach. The EEG was measured during the performance of different visuomotor tasks and the information we were trying to decode was the gripping force as applied by the subjects. The study revealed that it is possible, by using simple beta-rhythm filtering, phase demodulation, principal component analysis and a fuzzy model, to estimate the gripping-force response by using EEG signals as the inputs for the proposed model. The presented study has shown that even though EEG signals represent a superposition of all the active neurons, it is still possible to decode some information about the current activity of the brain centers. Furthermore, the cross-validation showed that the information about the gripping force is encoded in a very similar way for all the examined subjects. Thus, the phase shifts of the EEG signals seem to have a key role during activity and information transfer in the brain, while the phase-demodulation method proved to be a crucial step in the signal processing.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>18243387</pmid><doi>10.1016/j.neures.2007.12.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-0102
ispartof Neuroscience research, 2008-04, Vol.60 (4), p.389-396
issn 0168-0102
1872-8111
language eng
recordid cdi_proquest_miscellaneous_70409884
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Brain - physiology
Brain Mapping
EEG
Electroencephalography
Female
Force estimation
Fuzzy Logic
Hand Strength - physiology
Humans
Informational integration
Male
Models, Neurological
Phase demodulation
Signal Processing, Computer-Assisted
Task Performance and Analysis
title Gripping-force identification using EEG and phase-demodulation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gripping-force%20identification%20using%20EEG%20and%20phase-demodulation%20approach&rft.jtitle=Neuroscience%20research&rft.au=Logar,%20Vito&rft.date=2008-04-01&rft.volume=60&rft.issue=4&rft.spage=389&rft.epage=396&rft.pages=389-396&rft.issn=0168-0102&rft.eissn=1872-8111&rft_id=info:doi/10.1016/j.neures.2007.12.009&rft_dat=%3Cproquest_cross%3E70409884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70409884&rft_id=info:pmid/18243387&rft_els_id=S0168010207018640&rfr_iscdi=true