Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration
Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimiz...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2008-03, Vol.283 (12), p.7682-7689 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7689 |
---|---|
container_issue | 12 |
container_start_page | 7682 |
container_title | The Journal of biological chemistry |
container_volume | 283 |
creator | Husain, Maroof Bourret, Travis J. McCollister, Bruce D. Jones-Carson, Jessica Laughlin, James Vázquez-Torres, Andrés |
description | Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation. |
doi_str_mv | 10.1074/jbc.M708845200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70406212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820551582</els_id><sourcerecordid>20862305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</originalsourceid><addsrcrecordid>eNqFkM9v2yAYhtG0as26XXfcLE3azdkHNgYfo6r7IbWrtDZSbwjDR0KXmBSctP3vR-JIPU3jAoKHl5eHkA8UphRE_fW-M9MrAVLWnAG8IhMKsiorTu9ekwkAo2XLuDwlb1O6hzzqlr4hp1TSVlLRTsj8lx-iN8X1k7dYXOzCH0yF7ouZ1ZvB77D4jWkT-oTFEA6QPuzeDBFTKrrnYhbzavD94kD6mM9D_46cOL1K-P44n5H5t4vb8x_l5fX3n-ezy9LUDR_KrqoazoRzaGvBuGsN71ruaieobqzVzgAVxkiHNWVWGNkxnb8kO04BDfLqjHwZczcxPGxzD7X2yeBqpXsM26QE1NAwyv4LMpANq2CfOB1BE0NKEZ3aRL_W8VlRUHvjKhtXL8bzhY_H5G23RvuCHxVn4PMILP1i-egjqs4Hs8S1YrJSlCnRyH3BTyPldFB6EX1S8xsGtAKQAvjhITkSmIXuPEaVjMfeoM2ZZlA2-H91_AszhaQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20862305</pqid></control><display><type>article</type><title>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Husain, Maroof ; Bourret, Travis J. ; McCollister, Bruce D. ; Jones-Carson, Jessica ; Laughlin, James ; Vázquez-Torres, Andrés</creator><creatorcontrib>Husain, Maroof ; Bourret, Travis J. ; McCollister, Bruce D. ; Jones-Carson, Jessica ; Laughlin, James ; Vázquez-Torres, Andrés</creatorcontrib><description>Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M708845200</identifier><identifier>PMID: 18198179</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Drug Resistance, Microbial - genetics ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Interferon-gamma - pharmacology ; Macrophages, Peritoneal - enzymology ; Macrophages, Peritoneal - microbiology ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Knockout ; NADPH Dehydrogenase - genetics ; NADPH Dehydrogenase - metabolism ; NADPH Oxidase 2 ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Nitric Oxide - metabolism ; Nitric Oxide Synthase Type II - genetics ; Nitric Oxide Synthase Type II - metabolism ; Oxidative Stress - genetics ; Peroxiredoxins - genetics ; Peroxiredoxins - metabolism ; Peroxynitrous Acid - pharmacology ; Reactive Oxygen Species - metabolism ; Respiratory Burst - genetics ; Salmonella ; Salmonella Infections, Animal - enzymology ; Salmonella Infections, Animal - genetics ; Salmonella typhimurium - enzymology ; Salmonella typhimurium - genetics</subject><ispartof>The Journal of biological chemistry, 2008-03, Vol.283 (12), p.7682-7689</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</citedby><cites>FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18198179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Husain, Maroof</creatorcontrib><creatorcontrib>Bourret, Travis J.</creatorcontrib><creatorcontrib>McCollister, Bruce D.</creatorcontrib><creatorcontrib>Jones-Carson, Jessica</creatorcontrib><creatorcontrib>Laughlin, James</creatorcontrib><creatorcontrib>Vázquez-Torres, Andrés</creatorcontrib><title>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.</description><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Interferon-gamma - pharmacology</subject><subject>Macrophages, Peritoneal - enzymology</subject><subject>Macrophages, Peritoneal - microbiology</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>NADPH Dehydrogenase - genetics</subject><subject>NADPH Dehydrogenase - metabolism</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase Type II - genetics</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>Oxidative Stress - genetics</subject><subject>Peroxiredoxins - genetics</subject><subject>Peroxiredoxins - metabolism</subject><subject>Peroxynitrous Acid - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory Burst - genetics</subject><subject>Salmonella</subject><subject>Salmonella Infections, Animal - enzymology</subject><subject>Salmonella Infections, Animal - genetics</subject><subject>Salmonella typhimurium - enzymology</subject><subject>Salmonella typhimurium - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9v2yAYhtG0as26XXfcLE3azdkHNgYfo6r7IbWrtDZSbwjDR0KXmBSctP3vR-JIPU3jAoKHl5eHkA8UphRE_fW-M9MrAVLWnAG8IhMKsiorTu9ekwkAo2XLuDwlb1O6hzzqlr4hp1TSVlLRTsj8lx-iN8X1k7dYXOzCH0yF7ouZ1ZvB77D4jWkT-oTFEA6QPuzeDBFTKrrnYhbzavD94kD6mM9D_46cOL1K-P44n5H5t4vb8x_l5fX3n-ezy9LUDR_KrqoazoRzaGvBuGsN71ruaieobqzVzgAVxkiHNWVWGNkxnb8kO04BDfLqjHwZczcxPGxzD7X2yeBqpXsM26QE1NAwyv4LMpANq2CfOB1BE0NKEZ3aRL_W8VlRUHvjKhtXL8bzhY_H5G23RvuCHxVn4PMILP1i-egjqs4Hs8S1YrJSlCnRyH3BTyPldFB6EX1S8xsGtAKQAvjhITkSmIXuPEaVjMfeoM2ZZlA2-H91_AszhaQ3</recordid><startdate>20080321</startdate><enddate>20080321</enddate><creator>Husain, Maroof</creator><creator>Bourret, Travis J.</creator><creator>McCollister, Bruce D.</creator><creator>Jones-Carson, Jessica</creator><creator>Laughlin, James</creator><creator>Vázquez-Torres, Andrés</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20080321</creationdate><title>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</title><author>Husain, Maroof ; Bourret, Travis J. ; McCollister, Bruce D. ; Jones-Carson, Jessica ; Laughlin, James ; Vázquez-Torres, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Interferon-gamma - pharmacology</topic><topic>Macrophages, Peritoneal - enzymology</topic><topic>Macrophages, Peritoneal - microbiology</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>NADPH Dehydrogenase - genetics</topic><topic>NADPH Dehydrogenase - metabolism</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase Type II - genetics</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>Oxidative Stress - genetics</topic><topic>Peroxiredoxins - genetics</topic><topic>Peroxiredoxins - metabolism</topic><topic>Peroxynitrous Acid - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory Burst - genetics</topic><topic>Salmonella</topic><topic>Salmonella Infections, Animal - enzymology</topic><topic>Salmonella Infections, Animal - genetics</topic><topic>Salmonella typhimurium - enzymology</topic><topic>Salmonella typhimurium - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husain, Maroof</creatorcontrib><creatorcontrib>Bourret, Travis J.</creatorcontrib><creatorcontrib>McCollister, Bruce D.</creatorcontrib><creatorcontrib>Jones-Carson, Jessica</creatorcontrib><creatorcontrib>Laughlin, James</creatorcontrib><creatorcontrib>Vázquez-Torres, Andrés</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husain, Maroof</au><au>Bourret, Travis J.</au><au>McCollister, Bruce D.</au><au>Jones-Carson, Jessica</au><au>Laughlin, James</au><au>Vázquez-Torres, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-03-21</date><risdate>2008</risdate><volume>283</volume><issue>12</issue><spage>7682</spage><epage>7689</epage><pages>7682-7689</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18198179</pmid><doi>10.1074/jbc.M708845200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2008-03, Vol.283 (12), p.7682-7689 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_70406212 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Bacterial Proteins - genetics Bacterial Proteins - metabolism Drug Resistance, Microbial - genetics Electron Transport Chain Complex Proteins - genetics Electron Transport Chain Complex Proteins - metabolism Interferon-gamma - pharmacology Macrophages, Peritoneal - enzymology Macrophages, Peritoneal - microbiology Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Mice Mice, Knockout NADPH Dehydrogenase - genetics NADPH Dehydrogenase - metabolism NADPH Oxidase 2 NADPH Oxidases - genetics NADPH Oxidases - metabolism Nitric Oxide - metabolism Nitric Oxide Synthase Type II - genetics Nitric Oxide Synthase Type II - metabolism Oxidative Stress - genetics Peroxiredoxins - genetics Peroxiredoxins - metabolism Peroxynitrous Acid - pharmacology Reactive Oxygen Species - metabolism Respiratory Burst - genetics Salmonella Salmonella Infections, Animal - enzymology Salmonella Infections, Animal - genetics Salmonella typhimurium - enzymology Salmonella typhimurium - genetics |
title | Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Evokes%20an%20Adaptive%20Response%20to%20Oxidative%20Stress%20by%20Arresting%20Respiration&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Husain,%20Maroof&rft.date=2008-03-21&rft.volume=283&rft.issue=12&rft.spage=7682&rft.epage=7689&rft.pages=7682-7689&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M708845200&rft_dat=%3Cproquest_cross%3E20862305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20862305&rft_id=info:pmid/18198179&rft_els_id=S0021925820551582&rfr_iscdi=true |