Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration

Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-03, Vol.283 (12), p.7682-7689
Hauptverfasser: Husain, Maroof, Bourret, Travis J., McCollister, Bruce D., Jones-Carson, Jessica, Laughlin, James, Vázquez-Torres, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7689
container_issue 12
container_start_page 7682
container_title The Journal of biological chemistry
container_volume 283
creator Husain, Maroof
Bourret, Travis J.
McCollister, Bruce D.
Jones-Carson, Jessica
Laughlin, James
Vázquez-Torres, Andrés
description Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.
doi_str_mv 10.1074/jbc.M708845200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70406212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820551582</els_id><sourcerecordid>20862305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</originalsourceid><addsrcrecordid>eNqFkM9v2yAYhtG0as26XXfcLE3azdkHNgYfo6r7IbWrtDZSbwjDR0KXmBSctP3vR-JIPU3jAoKHl5eHkA8UphRE_fW-M9MrAVLWnAG8IhMKsiorTu9ekwkAo2XLuDwlb1O6hzzqlr4hp1TSVlLRTsj8lx-iN8X1k7dYXOzCH0yF7ouZ1ZvB77D4jWkT-oTFEA6QPuzeDBFTKrrnYhbzavD94kD6mM9D_46cOL1K-P44n5H5t4vb8x_l5fX3n-ezy9LUDR_KrqoazoRzaGvBuGsN71ruaieobqzVzgAVxkiHNWVWGNkxnb8kO04BDfLqjHwZczcxPGxzD7X2yeBqpXsM26QE1NAwyv4LMpANq2CfOB1BE0NKEZ3aRL_W8VlRUHvjKhtXL8bzhY_H5G23RvuCHxVn4PMILP1i-egjqs4Hs8S1YrJSlCnRyH3BTyPldFB6EX1S8xsGtAKQAvjhITkSmIXuPEaVjMfeoM2ZZlA2-H91_AszhaQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20862305</pqid></control><display><type>article</type><title>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Husain, Maroof ; Bourret, Travis J. ; McCollister, Bruce D. ; Jones-Carson, Jessica ; Laughlin, James ; Vázquez-Torres, Andrés</creator><creatorcontrib>Husain, Maroof ; Bourret, Travis J. ; McCollister, Bruce D. ; Jones-Carson, Jessica ; Laughlin, James ; Vázquez-Torres, Andrés</creatorcontrib><description>Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M708845200</identifier><identifier>PMID: 18198179</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Drug Resistance, Microbial - genetics ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Interferon-gamma - pharmacology ; Macrophages, Peritoneal - enzymology ; Macrophages, Peritoneal - microbiology ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Knockout ; NADPH Dehydrogenase - genetics ; NADPH Dehydrogenase - metabolism ; NADPH Oxidase 2 ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Nitric Oxide - metabolism ; Nitric Oxide Synthase Type II - genetics ; Nitric Oxide Synthase Type II - metabolism ; Oxidative Stress - genetics ; Peroxiredoxins - genetics ; Peroxiredoxins - metabolism ; Peroxynitrous Acid - pharmacology ; Reactive Oxygen Species - metabolism ; Respiratory Burst - genetics ; Salmonella ; Salmonella Infections, Animal - enzymology ; Salmonella Infections, Animal - genetics ; Salmonella typhimurium - enzymology ; Salmonella typhimurium - genetics</subject><ispartof>The Journal of biological chemistry, 2008-03, Vol.283 (12), p.7682-7689</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</citedby><cites>FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18198179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Husain, Maroof</creatorcontrib><creatorcontrib>Bourret, Travis J.</creatorcontrib><creatorcontrib>McCollister, Bruce D.</creatorcontrib><creatorcontrib>Jones-Carson, Jessica</creatorcontrib><creatorcontrib>Laughlin, James</creatorcontrib><creatorcontrib>Vázquez-Torres, Andrés</creatorcontrib><title>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.</description><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Interferon-gamma - pharmacology</subject><subject>Macrophages, Peritoneal - enzymology</subject><subject>Macrophages, Peritoneal - microbiology</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>NADPH Dehydrogenase - genetics</subject><subject>NADPH Dehydrogenase - metabolism</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase Type II - genetics</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>Oxidative Stress - genetics</subject><subject>Peroxiredoxins - genetics</subject><subject>Peroxiredoxins - metabolism</subject><subject>Peroxynitrous Acid - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory Burst - genetics</subject><subject>Salmonella</subject><subject>Salmonella Infections, Animal - enzymology</subject><subject>Salmonella Infections, Animal - genetics</subject><subject>Salmonella typhimurium - enzymology</subject><subject>Salmonella typhimurium - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9v2yAYhtG0as26XXfcLE3azdkHNgYfo6r7IbWrtDZSbwjDR0KXmBSctP3vR-JIPU3jAoKHl5eHkA8UphRE_fW-M9MrAVLWnAG8IhMKsiorTu9ekwkAo2XLuDwlb1O6hzzqlr4hp1TSVlLRTsj8lx-iN8X1k7dYXOzCH0yF7ouZ1ZvB77D4jWkT-oTFEA6QPuzeDBFTKrrnYhbzavD94kD6mM9D_46cOL1K-P44n5H5t4vb8x_l5fX3n-ezy9LUDR_KrqoazoRzaGvBuGsN71ruaieobqzVzgAVxkiHNWVWGNkxnb8kO04BDfLqjHwZczcxPGxzD7X2yeBqpXsM26QE1NAwyv4LMpANq2CfOB1BE0NKEZ3aRL_W8VlRUHvjKhtXL8bzhY_H5G23RvuCHxVn4PMILP1i-egjqs4Hs8S1YrJSlCnRyH3BTyPldFB6EX1S8xsGtAKQAvjhITkSmIXuPEaVjMfeoM2ZZlA2-H91_AszhaQ3</recordid><startdate>20080321</startdate><enddate>20080321</enddate><creator>Husain, Maroof</creator><creator>Bourret, Travis J.</creator><creator>McCollister, Bruce D.</creator><creator>Jones-Carson, Jessica</creator><creator>Laughlin, James</creator><creator>Vázquez-Torres, Andrés</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20080321</creationdate><title>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</title><author>Husain, Maroof ; Bourret, Travis J. ; McCollister, Bruce D. ; Jones-Carson, Jessica ; Laughlin, James ; Vázquez-Torres, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-b336527ffed4725f9c5b95f4f71a6ddafc017cc8fe412d7c8b2a0218b510ece53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Interferon-gamma - pharmacology</topic><topic>Macrophages, Peritoneal - enzymology</topic><topic>Macrophages, Peritoneal - microbiology</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>NADPH Dehydrogenase - genetics</topic><topic>NADPH Dehydrogenase - metabolism</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase Type II - genetics</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>Oxidative Stress - genetics</topic><topic>Peroxiredoxins - genetics</topic><topic>Peroxiredoxins - metabolism</topic><topic>Peroxynitrous Acid - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory Burst - genetics</topic><topic>Salmonella</topic><topic>Salmonella Infections, Animal - enzymology</topic><topic>Salmonella Infections, Animal - genetics</topic><topic>Salmonella typhimurium - enzymology</topic><topic>Salmonella typhimurium - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husain, Maroof</creatorcontrib><creatorcontrib>Bourret, Travis J.</creatorcontrib><creatorcontrib>McCollister, Bruce D.</creatorcontrib><creatorcontrib>Jones-Carson, Jessica</creatorcontrib><creatorcontrib>Laughlin, James</creatorcontrib><creatorcontrib>Vázquez-Torres, Andrés</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husain, Maroof</au><au>Bourret, Travis J.</au><au>McCollister, Bruce D.</au><au>Jones-Carson, Jessica</au><au>Laughlin, James</au><au>Vázquez-Torres, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-03-21</date><risdate>2008</risdate><volume>283</volume><issue>12</issue><spage>7682</spage><epage>7689</epage><pages>7682-7689</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNγ-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH·) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18198179</pmid><doi>10.1074/jbc.M708845200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-03, Vol.283 (12), p.7682-7689
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_70406212
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Drug Resistance, Microbial - genetics
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Interferon-gamma - pharmacology
Macrophages, Peritoneal - enzymology
Macrophages, Peritoneal - microbiology
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mice
Mice, Knockout
NADPH Dehydrogenase - genetics
NADPH Dehydrogenase - metabolism
NADPH Oxidase 2
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
Nitric Oxide - metabolism
Nitric Oxide Synthase Type II - genetics
Nitric Oxide Synthase Type II - metabolism
Oxidative Stress - genetics
Peroxiredoxins - genetics
Peroxiredoxins - metabolism
Peroxynitrous Acid - pharmacology
Reactive Oxygen Species - metabolism
Respiratory Burst - genetics
Salmonella
Salmonella Infections, Animal - enzymology
Salmonella Infections, Animal - genetics
Salmonella typhimurium - enzymology
Salmonella typhimurium - genetics
title Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Evokes%20an%20Adaptive%20Response%20to%20Oxidative%20Stress%20by%20Arresting%20Respiration&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Husain,%20Maroof&rft.date=2008-03-21&rft.volume=283&rft.issue=12&rft.spage=7682&rft.epage=7689&rft.pages=7682-7689&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M708845200&rft_dat=%3Cproquest_cross%3E20862305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20862305&rft_id=info:pmid/18198179&rft_els_id=S0021925820551582&rfr_iscdi=true