Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return

Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect in which the pulmonary veins fail to enter the left atrium and drain instead into the right atrium or one of its venous tributaries. Although a genetic basis for TAPVR has long been recognized, no single gene involved in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2008-04, Vol.29 (4), p.468-474
Hauptverfasser: Cinquetti, Raffaella, Badi, Ileana, Campione, Marina, Bortoletto, Elisabetta, Chiesa, Giulia, Parolini, Cinzia, Camesasca, Chiara, Russo, Antonella, Taramelli, Roberto, Acquati, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 4
container_start_page 468
container_title Human mutation
container_volume 29
creator Cinquetti, Raffaella
Badi, Ileana
Campione, Marina
Bortoletto, Elisabetta
Chiesa, Giulia
Parolini, Cinzia
Camesasca, Chiara
Russo, Antonella
Taramelli, Roberto
Acquati, Francesco
description Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect in which the pulmonary veins fail to enter the left atrium and drain instead into the right atrium or one of its venous tributaries. Although a genetic basis for TAPVR has long been recognized, no single gene involved in the pathogenesis of this disease has been identified to date. We previously reported a TAPVR patient bearing a de novo 10;21 balanced translocation. In this work, we cloned both translocation breakpoints from this patient and mapped the ANKRD1 gene, encoding a cardiac transcriptional regulator, 130 kb proximally to the breakpoint on chromosome 10. In situ hybridization analysis performed on murine embryos showed ANKRD1 expression in the developing pulmonary veins, suggesting a possible role for this gene in TAPVR pathogenesis. Moreover, ANKRD1 expression levels were found to be highly increased in lymphoblastoid cell lines derived from both the translocation-bearing proband and a second independent sporadic TAPVR patient, suggesting that disruption of the normal ANKRD1 expression pattern is associated with TAPVR. Finally, a nonconservative missense mutation in the ANKRD1 gene was found in a third sporadic TAPVR patient. In vitro calpain-mediated degradation assays, coupled to reporter gene analysis in transfected HeLa cells, strongly suggested that this mutation enhances both the stability of the ANKRD1/CARP protein and its transcriptional repression activity upon the cardiac-specific atrial natriuretic factor (ANF) promoter. Taken together, these results define ANKRD1 as a possible candidate gene for TAPVR pathogenesis. Hum Mutat 29(4), 468-474, 2008.
doi_str_mv 10.1002/humu.20711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70401751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70401751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4501-ce0bc60698916abc309c920295091700a188d5e1204101d59b8826157c5bf6a73</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoqWw4QHAK1Qhpcw4cWwvq1Jo1QIS9K4tx5lcgvJzaydU3fbJcchF7Lry-MznY48PY68RThBAfPg59_OJAIX4hB0iGJ0luXi61NJkSpnigL2I8RcAaCnz5-wAtVC5LsUhe7gJbog-tLupHQfX8ZoCbefOLVvuhpo73rcx0hCJ9_O06jU17UD89OvV94_IXUyQT2xbu4n4llKrGQOfxikZumHsXTfOke_mrk93hHv-m4ZFCDTNYXjJnjWui_Rqvx6xzafzm7OL7Prb58uz0-vMFxIw8wSVL6E02mDpKp-D8UaAMBIMKgCHWteSUECBgLU0ldaiRKm8rJrSqfyIvVt9d2G8nSlONg3mqevcQOk1VkEBqCQm8PhREJUqSwk56IS-X1EfxhgDNXYX2j6NaBHsEo5dwrF_w0nwm73vXPVU_0f3aSQAV-Cu7ej-ESt7sfmy-Wf6dj3TuNG6bWij3fwQgHkKW5Xpd_I_rbqjhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776650308</pqid></control><display><type>article</type><title>Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cinquetti, Raffaella ; Badi, Ileana ; Campione, Marina ; Bortoletto, Elisabetta ; Chiesa, Giulia ; Parolini, Cinzia ; Camesasca, Chiara ; Russo, Antonella ; Taramelli, Roberto ; Acquati, Francesco</creator><creatorcontrib>Cinquetti, Raffaella ; Badi, Ileana ; Campione, Marina ; Bortoletto, Elisabetta ; Chiesa, Giulia ; Parolini, Cinzia ; Camesasca, Chiara ; Russo, Antonella ; Taramelli, Roberto ; Acquati, Francesco</creatorcontrib><description>Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect in which the pulmonary veins fail to enter the left atrium and drain instead into the right atrium or one of its venous tributaries. Although a genetic basis for TAPVR has long been recognized, no single gene involved in the pathogenesis of this disease has been identified to date. We previously reported a TAPVR patient bearing a de novo 10;21 balanced translocation. In this work, we cloned both translocation breakpoints from this patient and mapped the ANKRD1 gene, encoding a cardiac transcriptional regulator, 130 kb proximally to the breakpoint on chromosome 10. In situ hybridization analysis performed on murine embryos showed ANKRD1 expression in the developing pulmonary veins, suggesting a possible role for this gene in TAPVR pathogenesis. Moreover, ANKRD1 expression levels were found to be highly increased in lymphoblastoid cell lines derived from both the translocation-bearing proband and a second independent sporadic TAPVR patient, suggesting that disruption of the normal ANKRD1 expression pattern is associated with TAPVR. Finally, a nonconservative missense mutation in the ANKRD1 gene was found in a third sporadic TAPVR patient. In vitro calpain-mediated degradation assays, coupled to reporter gene analysis in transfected HeLa cells, strongly suggested that this mutation enhances both the stability of the ANKRD1/CARP protein and its transcriptional repression activity upon the cardiac-specific atrial natriuretic factor (ANF) promoter. Taken together, these results define ANKRD1 as a possible candidate gene for TAPVR pathogenesis. Hum Mutat 29(4), 468-474, 2008.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.20711</identifier><identifier>PMID: 18273862</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; ANKRD1 ; Base Sequence ; candidate gene ; Cell Line ; Chromosomes, Human, Pair 10 - genetics ; Chromosomes, Human, Pair 21 - genetics ; congenital heart disease ; DNA - genetics ; Female ; Gene Expression ; Heart Defects, Congenital - genetics ; Heart Defects, Congenital - metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Mutation, Missense ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Pedigree ; Pregnancy ; Pulmonary Veins - abnormalities ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; TAPVR ; Transcription, Genetic ; Transfection ; Translocation, Genetic</subject><ispartof>Human mutation, 2008-04, Vol.29 (4), p.468-474</ispartof><rights>2008 Wiley‐Liss, Inc.</rights><rights>Copyright 2008 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4501-ce0bc60698916abc309c920295091700a188d5e1204101d59b8826157c5bf6a73</citedby><cites>FETCH-LOGICAL-c4501-ce0bc60698916abc309c920295091700a188d5e1204101d59b8826157c5bf6a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.20711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.20711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18273862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cinquetti, Raffaella</creatorcontrib><creatorcontrib>Badi, Ileana</creatorcontrib><creatorcontrib>Campione, Marina</creatorcontrib><creatorcontrib>Bortoletto, Elisabetta</creatorcontrib><creatorcontrib>Chiesa, Giulia</creatorcontrib><creatorcontrib>Parolini, Cinzia</creatorcontrib><creatorcontrib>Camesasca, Chiara</creatorcontrib><creatorcontrib>Russo, Antonella</creatorcontrib><creatorcontrib>Taramelli, Roberto</creatorcontrib><creatorcontrib>Acquati, Francesco</creatorcontrib><title>Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect in which the pulmonary veins fail to enter the left atrium and drain instead into the right atrium or one of its venous tributaries. Although a genetic basis for TAPVR has long been recognized, no single gene involved in the pathogenesis of this disease has been identified to date. We previously reported a TAPVR patient bearing a de novo 10;21 balanced translocation. In this work, we cloned both translocation breakpoints from this patient and mapped the ANKRD1 gene, encoding a cardiac transcriptional regulator, 130 kb proximally to the breakpoint on chromosome 10. In situ hybridization analysis performed on murine embryos showed ANKRD1 expression in the developing pulmonary veins, suggesting a possible role for this gene in TAPVR pathogenesis. Moreover, ANKRD1 expression levels were found to be highly increased in lymphoblastoid cell lines derived from both the translocation-bearing proband and a second independent sporadic TAPVR patient, suggesting that disruption of the normal ANKRD1 expression pattern is associated with TAPVR. Finally, a nonconservative missense mutation in the ANKRD1 gene was found in a third sporadic TAPVR patient. In vitro calpain-mediated degradation assays, coupled to reporter gene analysis in transfected HeLa cells, strongly suggested that this mutation enhances both the stability of the ANKRD1/CARP protein and its transcriptional repression activity upon the cardiac-specific atrial natriuretic factor (ANF) promoter. Taken together, these results define ANKRD1 as a possible candidate gene for TAPVR pathogenesis. Hum Mutat 29(4), 468-474, 2008.</description><subject>Animals</subject><subject>ANKRD1</subject><subject>Base Sequence</subject><subject>candidate gene</subject><subject>Cell Line</subject><subject>Chromosomes, Human, Pair 10 - genetics</subject><subject>Chromosomes, Human, Pair 21 - genetics</subject><subject>congenital heart disease</subject><subject>DNA - genetics</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Heart Defects, Congenital - genetics</subject><subject>Heart Defects, Congenital - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Mutation, Missense</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Pedigree</subject><subject>Pregnancy</subject><subject>Pulmonary Veins - abnormalities</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>TAPVR</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Translocation, Genetic</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhS0EoqWw4QHAK1Qhpcw4cWwvq1Jo1QIS9K4tx5lcgvJzaydU3fbJcchF7Lry-MznY48PY68RThBAfPg59_OJAIX4hB0iGJ0luXi61NJkSpnigL2I8RcAaCnz5-wAtVC5LsUhe7gJbog-tLupHQfX8ZoCbefOLVvuhpo73rcx0hCJ9_O06jU17UD89OvV94_IXUyQT2xbu4n4llKrGQOfxikZumHsXTfOke_mrk93hHv-m4ZFCDTNYXjJnjWui_Rqvx6xzafzm7OL7Prb58uz0-vMFxIw8wSVL6E02mDpKp-D8UaAMBIMKgCHWteSUECBgLU0ldaiRKm8rJrSqfyIvVt9d2G8nSlONg3mqevcQOk1VkEBqCQm8PhREJUqSwk56IS-X1EfxhgDNXYX2j6NaBHsEo5dwrF_w0nwm73vXPVU_0f3aSQAV-Cu7ej-ESt7sfmy-Wf6dj3TuNG6bWij3fwQgHkKW5Xpd_I_rbqjhg</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Cinquetti, Raffaella</creator><creator>Badi, Ileana</creator><creator>Campione, Marina</creator><creator>Bortoletto, Elisabetta</creator><creator>Chiesa, Giulia</creator><creator>Parolini, Cinzia</creator><creator>Camesasca, Chiara</creator><creator>Russo, Antonella</creator><creator>Taramelli, Roberto</creator><creator>Acquati, Francesco</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200804</creationdate><title>Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return</title><author>Cinquetti, Raffaella ; Badi, Ileana ; Campione, Marina ; Bortoletto, Elisabetta ; Chiesa, Giulia ; Parolini, Cinzia ; Camesasca, Chiara ; Russo, Antonella ; Taramelli, Roberto ; Acquati, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4501-ce0bc60698916abc309c920295091700a188d5e1204101d59b8826157c5bf6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>ANKRD1</topic><topic>Base Sequence</topic><topic>candidate gene</topic><topic>Cell Line</topic><topic>Chromosomes, Human, Pair 10 - genetics</topic><topic>Chromosomes, Human, Pair 21 - genetics</topic><topic>congenital heart disease</topic><topic>DNA - genetics</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Heart Defects, Congenital - genetics</topic><topic>Heart Defects, Congenital - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Mutation, Missense</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Pedigree</topic><topic>Pregnancy</topic><topic>Pulmonary Veins - abnormalities</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>TAPVR</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Translocation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cinquetti, Raffaella</creatorcontrib><creatorcontrib>Badi, Ileana</creatorcontrib><creatorcontrib>Campione, Marina</creatorcontrib><creatorcontrib>Bortoletto, Elisabetta</creatorcontrib><creatorcontrib>Chiesa, Giulia</creatorcontrib><creatorcontrib>Parolini, Cinzia</creatorcontrib><creatorcontrib>Camesasca, Chiara</creatorcontrib><creatorcontrib>Russo, Antonella</creatorcontrib><creatorcontrib>Taramelli, Roberto</creatorcontrib><creatorcontrib>Acquati, Francesco</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cinquetti, Raffaella</au><au>Badi, Ileana</au><au>Campione, Marina</au><au>Bortoletto, Elisabetta</au><au>Chiesa, Giulia</au><au>Parolini, Cinzia</au><au>Camesasca, Chiara</au><au>Russo, Antonella</au><au>Taramelli, Roberto</au><au>Acquati, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2008-04</date><risdate>2008</risdate><volume>29</volume><issue>4</issue><spage>468</spage><epage>474</epage><pages>468-474</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect in which the pulmonary veins fail to enter the left atrium and drain instead into the right atrium or one of its venous tributaries. Although a genetic basis for TAPVR has long been recognized, no single gene involved in the pathogenesis of this disease has been identified to date. We previously reported a TAPVR patient bearing a de novo 10;21 balanced translocation. In this work, we cloned both translocation breakpoints from this patient and mapped the ANKRD1 gene, encoding a cardiac transcriptional regulator, 130 kb proximally to the breakpoint on chromosome 10. In situ hybridization analysis performed on murine embryos showed ANKRD1 expression in the developing pulmonary veins, suggesting a possible role for this gene in TAPVR pathogenesis. Moreover, ANKRD1 expression levels were found to be highly increased in lymphoblastoid cell lines derived from both the translocation-bearing proband and a second independent sporadic TAPVR patient, suggesting that disruption of the normal ANKRD1 expression pattern is associated with TAPVR. Finally, a nonconservative missense mutation in the ANKRD1 gene was found in a third sporadic TAPVR patient. In vitro calpain-mediated degradation assays, coupled to reporter gene analysis in transfected HeLa cells, strongly suggested that this mutation enhances both the stability of the ANKRD1/CARP protein and its transcriptional repression activity upon the cardiac-specific atrial natriuretic factor (ANF) promoter. Taken together, these results define ANKRD1 as a possible candidate gene for TAPVR pathogenesis. Hum Mutat 29(4), 468-474, 2008.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18273862</pmid><doi>10.1002/humu.20711</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2008-04, Vol.29 (4), p.468-474
issn 1059-7794
1098-1004
language eng
recordid cdi_proquest_miscellaneous_70401751
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
ANKRD1
Base Sequence
candidate gene
Cell Line
Chromosomes, Human, Pair 10 - genetics
Chromosomes, Human, Pair 21 - genetics
congenital heart disease
DNA - genetics
Female
Gene Expression
Heart Defects, Congenital - genetics
Heart Defects, Congenital - metabolism
HeLa Cells
Humans
Male
Mice
Muscle Proteins - genetics
Muscle Proteins - metabolism
Mutation, Missense
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Pedigree
Pregnancy
Pulmonary Veins - abnormalities
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Repressor Proteins - genetics
Repressor Proteins - metabolism
TAPVR
Transcription, Genetic
Transfection
Translocation, Genetic
title Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20deregulation%20and%20a%20missense%20mutation%20define%20ANKRD1%20as%20a%20candidate%20gene%20for%20total%20anomalous%20pulmonary%20venous%20return&rft.jtitle=Human%20mutation&rft.au=Cinquetti,%20Raffaella&rft.date=2008-04&rft.volume=29&rft.issue=4&rft.spage=468&rft.epage=474&rft.pages=468-474&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.20711&rft_dat=%3Cproquest_cross%3E70401751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776650308&rft_id=info:pmid/18273862&rfr_iscdi=true