Toward modulating the architecture of hydrogel scaffolds: curtains versus channels

The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2008-04, Vol.19 (4), p.1459-1466
Hauptverfasser: Van Vlierberghe, S., Dubruel, P., Lippens, E., Masschaele, B., Van Hoorebeke, L., Cornelissen, M., Unger, R., Kirkpatrick, C. J., Schacht, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1466
container_issue 4
container_start_page 1459
container_title Journal of materials science. Materials in medicine
container_volume 19
creator Van Vlierberghe, S.
Dubruel, P.
Lippens, E.
Masschaele, B.
Van Hoorebeke, L.
Cornelissen, M.
Unger, R.
Kirkpatrick, C. J.
Schacht, E.
description The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.
doi_str_mv 10.1007/s10856-008-3375-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70401016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70401016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZpf0AvRfTQm9PRt9RbWNomEAiU9Cxkabzr4LVSyU7Iv6-XXQgUQk5zmOd9h-Eh5BODcwZgvlUGVukGwDZCGNXYN2TFlBGNtMK-JStwyjRSCTghp7XeAYB0Sr0nJ8xy55yWK_L7Nj-Gkugup3kIUz9u6LRFGkrc9hPGaS5Ic0e3T6nkDQ60xtB1eUj1O41zmUI_VvqApc6Vxm0YRxzqB_KuC0PFj8d5Rv78_HG7vmyub35drS-umygFmxpMFpmwTKBLwYDTyrQ8GlCiNZKLGJ1kgXeoOhfbVi0bZpOWWra8s4YlcUa-HnrvS_47Y538rq8RhyGMmOfqDUhgwPSroOCGSw7uVZCDVs44sYBf_gPv8lzG5VvPOePaGr1vYwcollxrwc7fl34XypNn4Pf-_MGfX_z5vT9vl8znY_Hc7jA9J47CFoAfgLqsxg2W58svt_4DxiClPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221268769</pqid></control><display><type>article</type><title>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Van Vlierberghe, S. ; Dubruel, P. ; Lippens, E. ; Masschaele, B. ; Van Hoorebeke, L. ; Cornelissen, M. ; Unger, R. ; Kirkpatrick, C. J. ; Schacht, E.</creator><creatorcontrib>Van Vlierberghe, S. ; Dubruel, P. ; Lippens, E. ; Masschaele, B. ; Van Hoorebeke, L. ; Cornelissen, M. ; Unger, R. ; Kirkpatrick, C. J. ; Schacht, E.</creatorcontrib><description>The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-008-3375-8</identifier><identifier>PMID: 18299964</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anhydrides - chemistry ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Ceramics ; Chemistry and Materials Science ; Chondroitin Sulfates - chemistry ; Composites ; Freezing ; Gelatin - chemistry ; Glass ; Glycosaminoglycans - chemistry ; HeLa Cells ; Humans ; Hydrogels - chemistry ; Materials Science ; Materials Testing ; Microscopy, Atomic Force ; Microscopy, Confocal ; Natural Materials ; Polymer Sciences ; Protein Engineering - methods ; Regenerative Medicine/Tissue Engineering ; Surfaces and Interfaces ; Thin Films ; Tomography, X-Ray Computed - methods</subject><ispartof>Journal of materials science. Materials in medicine, 2008-04, Vol.19 (4), p.1459-1466</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</citedby><cites>FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-008-3375-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-008-3375-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18299964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Vlierberghe, S.</creatorcontrib><creatorcontrib>Dubruel, P.</creatorcontrib><creatorcontrib>Lippens, E.</creatorcontrib><creatorcontrib>Masschaele, B.</creatorcontrib><creatorcontrib>Van Hoorebeke, L.</creatorcontrib><creatorcontrib>Cornelissen, M.</creatorcontrib><creatorcontrib>Unger, R.</creatorcontrib><creatorcontrib>Kirkpatrick, C. J.</creatorcontrib><creatorcontrib>Schacht, E.</creatorcontrib><title>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.</description><subject>Anhydrides - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Composites</subject><subject>Freezing</subject><subject>Gelatin - chemistry</subject><subject>Glass</subject><subject>Glycosaminoglycans - chemistry</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Protein Engineering - methods</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r3DAQhkVpaTZpf0AvRfTQm9PRt9RbWNomEAiU9Cxkabzr4LVSyU7Iv6-XXQgUQk5zmOd9h-Eh5BODcwZgvlUGVukGwDZCGNXYN2TFlBGNtMK-JStwyjRSCTghp7XeAYB0Sr0nJ8xy55yWK_L7Nj-Gkugup3kIUz9u6LRFGkrc9hPGaS5Ic0e3T6nkDQ60xtB1eUj1O41zmUI_VvqApc6Vxm0YRxzqB_KuC0PFj8d5Rv78_HG7vmyub35drS-umygFmxpMFpmwTKBLwYDTyrQ8GlCiNZKLGJ1kgXeoOhfbVi0bZpOWWra8s4YlcUa-HnrvS_47Y538rq8RhyGMmOfqDUhgwPSroOCGSw7uVZCDVs44sYBf_gPv8lzG5VvPOePaGr1vYwcollxrwc7fl34XypNn4Pf-_MGfX_z5vT9vl8znY_Hc7jA9J47CFoAfgLqsxg2W58svt_4DxiClPA</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Van Vlierberghe, S.</creator><creator>Dubruel, P.</creator><creator>Lippens, E.</creator><creator>Masschaele, B.</creator><creator>Van Hoorebeke, L.</creator><creator>Cornelissen, M.</creator><creator>Unger, R.</creator><creator>Kirkpatrick, C. J.</creator><creator>Schacht, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</title><author>Van Vlierberghe, S. ; Dubruel, P. ; Lippens, E. ; Masschaele, B. ; Van Hoorebeke, L. ; Cornelissen, M. ; Unger, R. ; Kirkpatrick, C. J. ; Schacht, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anhydrides - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Composites</topic><topic>Freezing</topic><topic>Gelatin - chemistry</topic><topic>Glass</topic><topic>Glycosaminoglycans - chemistry</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Protein Engineering - methods</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Vlierberghe, S.</creatorcontrib><creatorcontrib>Dubruel, P.</creatorcontrib><creatorcontrib>Lippens, E.</creatorcontrib><creatorcontrib>Masschaele, B.</creatorcontrib><creatorcontrib>Van Hoorebeke, L.</creatorcontrib><creatorcontrib>Cornelissen, M.</creatorcontrib><creatorcontrib>Unger, R.</creatorcontrib><creatorcontrib>Kirkpatrick, C. J.</creatorcontrib><creatorcontrib>Schacht, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Vlierberghe, S.</au><au>Dubruel, P.</au><au>Lippens, E.</au><au>Masschaele, B.</au><au>Van Hoorebeke, L.</au><au>Cornelissen, M.</au><au>Unger, R.</au><au>Kirkpatrick, C. J.</au><au>Schacht, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>19</volume><issue>4</issue><spage>1459</spage><epage>1466</epage><pages>1459-1466</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18299964</pmid><doi>10.1007/s10856-008-3375-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2008-04, Vol.19 (4), p.1459-1466
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_70401016
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anhydrides - chemistry
Biocompatible Materials - chemistry
Biomaterials
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedical materials
Cell adhesion & migration
Cell Line, Tumor
Ceramics
Chemistry and Materials Science
Chondroitin Sulfates - chemistry
Composites
Freezing
Gelatin - chemistry
Glass
Glycosaminoglycans - chemistry
HeLa Cells
Humans
Hydrogels - chemistry
Materials Science
Materials Testing
Microscopy, Atomic Force
Microscopy, Confocal
Natural Materials
Polymer Sciences
Protein Engineering - methods
Regenerative Medicine/Tissue Engineering
Surfaces and Interfaces
Thin Films
Tomography, X-Ray Computed - methods
title Toward modulating the architecture of hydrogel scaffolds: curtains versus channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20modulating%20the%20architecture%20of%20hydrogel%20scaffolds:%20curtains%20versus%20channels&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Van%20Vlierberghe,%20S.&rft.date=2008-04-01&rft.volume=19&rft.issue=4&rft.spage=1459&rft.epage=1466&rft.pages=1459-1466&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-008-3375-8&rft_dat=%3Cproquest_cross%3E70401016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221268769&rft_id=info:pmid/18299964&rfr_iscdi=true