Toward modulating the architecture of hydrogel scaffolds: curtains versus channels
The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cel...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2008-04, Vol.19 (4), p.1459-1466 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1466 |
---|---|
container_issue | 4 |
container_start_page | 1459 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 19 |
creator | Van Vlierberghe, S. Dubruel, P. Lippens, E. Masschaele, B. Van Hoorebeke, L. Cornelissen, M. Unger, R. Kirkpatrick, C. J. Schacht, E. |
description | The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques. |
doi_str_mv | 10.1007/s10856-008-3375-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70401016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70401016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZpf0AvRfTQm9PRt9RbWNomEAiU9Cxkabzr4LVSyU7Iv6-XXQgUQk5zmOd9h-Eh5BODcwZgvlUGVukGwDZCGNXYN2TFlBGNtMK-JStwyjRSCTghp7XeAYB0Sr0nJ8xy55yWK_L7Nj-Gkugup3kIUz9u6LRFGkrc9hPGaS5Ic0e3T6nkDQ60xtB1eUj1O41zmUI_VvqApc6Vxm0YRxzqB_KuC0PFj8d5Rv78_HG7vmyub35drS-umygFmxpMFpmwTKBLwYDTyrQ8GlCiNZKLGJ1kgXeoOhfbVi0bZpOWWra8s4YlcUa-HnrvS_47Y538rq8RhyGMmOfqDUhgwPSroOCGSw7uVZCDVs44sYBf_gPv8lzG5VvPOePaGr1vYwcollxrwc7fl34XypNn4Pf-_MGfX_z5vT9vl8znY_Hc7jA9J47CFoAfgLqsxg2W58svt_4DxiClPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221268769</pqid></control><display><type>article</type><title>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Van Vlierberghe, S. ; Dubruel, P. ; Lippens, E. ; Masschaele, B. ; Van Hoorebeke, L. ; Cornelissen, M. ; Unger, R. ; Kirkpatrick, C. J. ; Schacht, E.</creator><creatorcontrib>Van Vlierberghe, S. ; Dubruel, P. ; Lippens, E. ; Masschaele, B. ; Van Hoorebeke, L. ; Cornelissen, M. ; Unger, R. ; Kirkpatrick, C. J. ; Schacht, E.</creatorcontrib><description>The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-008-3375-8</identifier><identifier>PMID: 18299964</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anhydrides - chemistry ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cell adhesion & migration ; Cell Line, Tumor ; Ceramics ; Chemistry and Materials Science ; Chondroitin Sulfates - chemistry ; Composites ; Freezing ; Gelatin - chemistry ; Glass ; Glycosaminoglycans - chemistry ; HeLa Cells ; Humans ; Hydrogels - chemistry ; Materials Science ; Materials Testing ; Microscopy, Atomic Force ; Microscopy, Confocal ; Natural Materials ; Polymer Sciences ; Protein Engineering - methods ; Regenerative Medicine/Tissue Engineering ; Surfaces and Interfaces ; Thin Films ; Tomography, X-Ray Computed - methods</subject><ispartof>Journal of materials science. Materials in medicine, 2008-04, Vol.19 (4), p.1459-1466</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</citedby><cites>FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-008-3375-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-008-3375-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18299964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Vlierberghe, S.</creatorcontrib><creatorcontrib>Dubruel, P.</creatorcontrib><creatorcontrib>Lippens, E.</creatorcontrib><creatorcontrib>Masschaele, B.</creatorcontrib><creatorcontrib>Van Hoorebeke, L.</creatorcontrib><creatorcontrib>Cornelissen, M.</creatorcontrib><creatorcontrib>Unger, R.</creatorcontrib><creatorcontrib>Kirkpatrick, C. J.</creatorcontrib><creatorcontrib>Schacht, E.</creatorcontrib><title>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.</description><subject>Anhydrides - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Tumor</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Composites</subject><subject>Freezing</subject><subject>Gelatin - chemistry</subject><subject>Glass</subject><subject>Glycosaminoglycans - chemistry</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Protein Engineering - methods</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r3DAQhkVpaTZpf0AvRfTQm9PRt9RbWNomEAiU9Cxkabzr4LVSyU7Iv6-XXQgUQk5zmOd9h-Eh5BODcwZgvlUGVukGwDZCGNXYN2TFlBGNtMK-JStwyjRSCTghp7XeAYB0Sr0nJ8xy55yWK_L7Nj-Gkugup3kIUz9u6LRFGkrc9hPGaS5Ic0e3T6nkDQ60xtB1eUj1O41zmUI_VvqApc6Vxm0YRxzqB_KuC0PFj8d5Rv78_HG7vmyub35drS-umygFmxpMFpmwTKBLwYDTyrQ8GlCiNZKLGJ1kgXeoOhfbVi0bZpOWWra8s4YlcUa-HnrvS_47Y538rq8RhyGMmOfqDUhgwPSroOCGSw7uVZCDVs44sYBf_gPv8lzG5VvPOePaGr1vYwcollxrwc7fl34XypNn4Pf-_MGfX_z5vT9vl8znY_Hc7jA9J47CFoAfgLqsxg2W58svt_4DxiClPA</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Van Vlierberghe, S.</creator><creator>Dubruel, P.</creator><creator>Lippens, E.</creator><creator>Masschaele, B.</creator><creator>Van Hoorebeke, L.</creator><creator>Cornelissen, M.</creator><creator>Unger, R.</creator><creator>Kirkpatrick, C. J.</creator><creator>Schacht, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</title><author>Van Vlierberghe, S. ; Dubruel, P. ; Lippens, E. ; Masschaele, B. ; Van Hoorebeke, L. ; Cornelissen, M. ; Unger, R. ; Kirkpatrick, C. J. ; Schacht, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-ed8e13813e9da709657b2c7053b7423cc941a2fe5f9cbb5c7018d6464b2f871d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anhydrides - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Tumor</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Composites</topic><topic>Freezing</topic><topic>Gelatin - chemistry</topic><topic>Glass</topic><topic>Glycosaminoglycans - chemistry</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Protein Engineering - methods</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Vlierberghe, S.</creatorcontrib><creatorcontrib>Dubruel, P.</creatorcontrib><creatorcontrib>Lippens, E.</creatorcontrib><creatorcontrib>Masschaele, B.</creatorcontrib><creatorcontrib>Van Hoorebeke, L.</creatorcontrib><creatorcontrib>Cornelissen, M.</creatorcontrib><creatorcontrib>Unger, R.</creatorcontrib><creatorcontrib>Kirkpatrick, C. J.</creatorcontrib><creatorcontrib>Schacht, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Vlierberghe, S.</au><au>Dubruel, P.</au><au>Lippens, E.</au><au>Masschaele, B.</au><au>Van Hoorebeke, L.</au><au>Cornelissen, M.</au><au>Unger, R.</au><au>Kirkpatrick, C. J.</au><au>Schacht, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward modulating the architecture of hydrogel scaffolds: curtains versus channels</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>19</volume><issue>4</issue><spage>1459</spage><epage>1466</epage><pages>1459-1466</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18299964</pmid><doi>10.1007/s10856-008-3375-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2008-04, Vol.19 (4), p.1459-1466 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_70401016 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Anhydrides - chemistry Biocompatible Materials - chemistry Biomaterials Biomedical engineering Biomedical Engineering and Bioengineering Biomedical materials Cell adhesion & migration Cell Line, Tumor Ceramics Chemistry and Materials Science Chondroitin Sulfates - chemistry Composites Freezing Gelatin - chemistry Glass Glycosaminoglycans - chemistry HeLa Cells Humans Hydrogels - chemistry Materials Science Materials Testing Microscopy, Atomic Force Microscopy, Confocal Natural Materials Polymer Sciences Protein Engineering - methods Regenerative Medicine/Tissue Engineering Surfaces and Interfaces Thin Films Tomography, X-Ray Computed - methods |
title | Toward modulating the architecture of hydrogel scaffolds: curtains versus channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20modulating%20the%20architecture%20of%20hydrogel%20scaffolds:%20curtains%20versus%20channels&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Van%20Vlierberghe,%20S.&rft.date=2008-04-01&rft.volume=19&rft.issue=4&rft.spage=1459&rft.epage=1466&rft.pages=1459-1466&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-008-3375-8&rft_dat=%3Cproquest_cross%3E70401016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221268769&rft_id=info:pmid/18299964&rfr_iscdi=true |