Enhancing Cell Adhesion and Confinement by Gradient Nanotopography

This work reports the design and use of a gradient nanotopography to enhance the resistance of mammalian cell adhesion on surfaces. The gradient nanotopography is prepared by depositing gold films on a glass microscope slide in a single azimuthal direction, but with continuous increase in the angle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2007-04, Vol.129 (16), p.4892-4893
Hauptverfasser: Simon, Karen A, Burton, Erik A, Han, Yongbin, Li, Jun, Huang, Anny, Luk, Yan-Yeung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4893
container_issue 16
container_start_page 4892
container_title Journal of the American Chemical Society
container_volume 129
creator Simon, Karen A
Burton, Erik A
Han, Yongbin
Li, Jun
Huang, Anny
Luk, Yan-Yeung
description This work reports the design and use of a gradient nanotopography to enhance the resistance of mammalian cell adhesion on surfaces. The gradient nanotopography is prepared by depositing gold films on a glass microscope slide in a single azimuthal direction, but with continuous increase in the angle between the incidence of gold atoms and the normal of the surface. By forming patterned self-assembled monolayers (SAMs) of alkanethiols into cell-adhesive regions (HS(CH2)14CH3) surrounded by cell-resistant areas (HS(CH2)12(OCH2CH2)3OH) on the gold film, the adhesion and confinement of albino 3T3 fibroblasts along the topographic gradient are studied. At the early stage of cell culture, cells adhere faster and reach confluency sooner on higher topographic regions (gold deposited at large incident angle) than on lower topographic regions (gold deposited at small incident angle). After cells proliferate to reach confluency within the patterns, the cells are confined in the high topographic regions up to 25 days, which is about 4 times longer than on gold films prepared on a rotating planetary. Overall, introducing nanostructured topography in gold films significantly enhances the bioinert chemistry of tri(ethylene glycol)-terminated SAMs that resist the adhesion of mammalian cells.
doi_str_mv 10.1021/ja0653472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70398665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70398665</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-df7093450445e94713a60a27bc11d084ef27e2c57222c0689c63be4f2a700bc3</originalsourceid><addsrcrecordid>eNptkE1PwkAQhjdGI4ge_AOmF008VGc_2m2P2CBqiKJyMF422-0WirCLu20i_94SCF48zUzmyTuTB6FzDDcYCL6dS4gjyjg5QF0cEQgjTOJD1AUAEvIkph104v28HRlJ8DHqYE5TRjHtoruBmUmjKjMNMr1YBP1ipn1lTSBNEWTWlJXRS23qIF8HQyeLatM_S2Nru7JTJ1ez9Sk6KuXC67Nd7aHJ_WCSPYSjl-Fj1h-Fkka4DouSQ0pZBIxFOmUcUxmDJDxXGBeQMF0SromKOCFEQZykKqa5ZiWRHCBXtIeutrErZ78b7WuxrLxqf5ZG28YLDjRN4tZDD11vQeWs906XYuWqpXRrgUFsfIm9r5a92IU2-VIXf-ROUAuEW6Dytf7Z76X7EjGnPBKT8bv4eM3Gb_CUis-Wv9zyUnkxt40zrZJ_Dv8CE-R-lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70398665</pqid></control><display><type>article</type><title>Enhancing Cell Adhesion and Confinement by Gradient Nanotopography</title><source>MEDLINE</source><source>ACS Publications</source><creator>Simon, Karen A ; Burton, Erik A ; Han, Yongbin ; Li, Jun ; Huang, Anny ; Luk, Yan-Yeung</creator><creatorcontrib>Simon, Karen A ; Burton, Erik A ; Han, Yongbin ; Li, Jun ; Huang, Anny ; Luk, Yan-Yeung</creatorcontrib><description>This work reports the design and use of a gradient nanotopography to enhance the resistance of mammalian cell adhesion on surfaces. The gradient nanotopography is prepared by depositing gold films on a glass microscope slide in a single azimuthal direction, but with continuous increase in the angle between the incidence of gold atoms and the normal of the surface. By forming patterned self-assembled monolayers (SAMs) of alkanethiols into cell-adhesive regions (HS(CH2)14CH3) surrounded by cell-resistant areas (HS(CH2)12(OCH2CH2)3OH) on the gold film, the adhesion and confinement of albino 3T3 fibroblasts along the topographic gradient are studied. At the early stage of cell culture, cells adhere faster and reach confluency sooner on higher topographic regions (gold deposited at large incident angle) than on lower topographic regions (gold deposited at small incident angle). After cells proliferate to reach confluency within the patterns, the cells are confined in the high topographic regions up to 25 days, which is about 4 times longer than on gold films prepared on a rotating planetary. Overall, introducing nanostructured topography in gold films significantly enhances the bioinert chemistry of tri(ethylene glycol)-terminated SAMs that resist the adhesion of mammalian cells.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0653472</identifier><identifier>PMID: 17394313</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>3T3 Cells ; Animals ; Cell Adhesion - physiology ; Mice ; Nanotechnology - methods ; Surface Properties</subject><ispartof>Journal of the American Chemical Society, 2007-04, Vol.129 (16), p.4892-4893</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-df7093450445e94713a60a27bc11d084ef27e2c57222c0689c63be4f2a700bc3</citedby><cites>FETCH-LOGICAL-a351t-df7093450445e94713a60a27bc11d084ef27e2c57222c0689c63be4f2a700bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0653472$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0653472$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17394313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Karen A</creatorcontrib><creatorcontrib>Burton, Erik A</creatorcontrib><creatorcontrib>Han, Yongbin</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Huang, Anny</creatorcontrib><creatorcontrib>Luk, Yan-Yeung</creatorcontrib><title>Enhancing Cell Adhesion and Confinement by Gradient Nanotopography</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>This work reports the design and use of a gradient nanotopography to enhance the resistance of mammalian cell adhesion on surfaces. The gradient nanotopography is prepared by depositing gold films on a glass microscope slide in a single azimuthal direction, but with continuous increase in the angle between the incidence of gold atoms and the normal of the surface. By forming patterned self-assembled monolayers (SAMs) of alkanethiols into cell-adhesive regions (HS(CH2)14CH3) surrounded by cell-resistant areas (HS(CH2)12(OCH2CH2)3OH) on the gold film, the adhesion and confinement of albino 3T3 fibroblasts along the topographic gradient are studied. At the early stage of cell culture, cells adhere faster and reach confluency sooner on higher topographic regions (gold deposited at large incident angle) than on lower topographic regions (gold deposited at small incident angle). After cells proliferate to reach confluency within the patterns, the cells are confined in the high topographic regions up to 25 days, which is about 4 times longer than on gold films prepared on a rotating planetary. Overall, introducing nanostructured topography in gold films significantly enhances the bioinert chemistry of tri(ethylene glycol)-terminated SAMs that resist the adhesion of mammalian cells.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Cell Adhesion - physiology</subject><subject>Mice</subject><subject>Nanotechnology - methods</subject><subject>Surface Properties</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1PwkAQhjdGI4ge_AOmF008VGc_2m2P2CBqiKJyMF422-0WirCLu20i_94SCF48zUzmyTuTB6FzDDcYCL6dS4gjyjg5QF0cEQgjTOJD1AUAEvIkph104v28HRlJ8DHqYE5TRjHtoruBmUmjKjMNMr1YBP1ipn1lTSBNEWTWlJXRS23qIF8HQyeLatM_S2Nru7JTJ1ez9Sk6KuXC67Nd7aHJ_WCSPYSjl-Fj1h-Fkka4DouSQ0pZBIxFOmUcUxmDJDxXGBeQMF0SromKOCFEQZykKqa5ZiWRHCBXtIeutrErZ78b7WuxrLxqf5ZG28YLDjRN4tZDD11vQeWs906XYuWqpXRrgUFsfIm9r5a92IU2-VIXf-ROUAuEW6Dytf7Z76X7EjGnPBKT8bv4eM3Gb_CUis-Wv9zyUnkxt40zrZJ_Dv8CE-R-lg</recordid><startdate>20070425</startdate><enddate>20070425</enddate><creator>Simon, Karen A</creator><creator>Burton, Erik A</creator><creator>Han, Yongbin</creator><creator>Li, Jun</creator><creator>Huang, Anny</creator><creator>Luk, Yan-Yeung</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070425</creationdate><title>Enhancing Cell Adhesion and Confinement by Gradient Nanotopography</title><author>Simon, Karen A ; Burton, Erik A ; Han, Yongbin ; Li, Jun ; Huang, Anny ; Luk, Yan-Yeung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-df7093450445e94713a60a27bc11d084ef27e2c57222c0689c63be4f2a700bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Cell Adhesion - physiology</topic><topic>Mice</topic><topic>Nanotechnology - methods</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Karen A</creatorcontrib><creatorcontrib>Burton, Erik A</creatorcontrib><creatorcontrib>Han, Yongbin</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Huang, Anny</creatorcontrib><creatorcontrib>Luk, Yan-Yeung</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Karen A</au><au>Burton, Erik A</au><au>Han, Yongbin</au><au>Li, Jun</au><au>Huang, Anny</au><au>Luk, Yan-Yeung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Cell Adhesion and Confinement by Gradient Nanotopography</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2007-04-25</date><risdate>2007</risdate><volume>129</volume><issue>16</issue><spage>4892</spage><epage>4893</epage><pages>4892-4893</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>This work reports the design and use of a gradient nanotopography to enhance the resistance of mammalian cell adhesion on surfaces. The gradient nanotopography is prepared by depositing gold films on a glass microscope slide in a single azimuthal direction, but with continuous increase in the angle between the incidence of gold atoms and the normal of the surface. By forming patterned self-assembled monolayers (SAMs) of alkanethiols into cell-adhesive regions (HS(CH2)14CH3) surrounded by cell-resistant areas (HS(CH2)12(OCH2CH2)3OH) on the gold film, the adhesion and confinement of albino 3T3 fibroblasts along the topographic gradient are studied. At the early stage of cell culture, cells adhere faster and reach confluency sooner on higher topographic regions (gold deposited at large incident angle) than on lower topographic regions (gold deposited at small incident angle). After cells proliferate to reach confluency within the patterns, the cells are confined in the high topographic regions up to 25 days, which is about 4 times longer than on gold films prepared on a rotating planetary. Overall, introducing nanostructured topography in gold films significantly enhances the bioinert chemistry of tri(ethylene glycol)-terminated SAMs that resist the adhesion of mammalian cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17394313</pmid><doi>10.1021/ja0653472</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2007-04, Vol.129 (16), p.4892-4893
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_70398665
source MEDLINE; ACS Publications
subjects 3T3 Cells
Animals
Cell Adhesion - physiology
Mice
Nanotechnology - methods
Surface Properties
title Enhancing Cell Adhesion and Confinement by Gradient Nanotopography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Cell%20Adhesion%20and%20Confinement%20by%20Gradient%20Nanotopography&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Simon,%20Karen%20A&rft.date=2007-04-25&rft.volume=129&rft.issue=16&rft.spage=4892&rft.epage=4893&rft.pages=4892-4893&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja0653472&rft_dat=%3Cproquest_cross%3E70398665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70398665&rft_id=info:pmid/17394313&rfr_iscdi=true