Asymmetric Synaptic Depression in Cortical Networks
Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2008-04, Vol.18 (4), p.771-788 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 4 |
container_start_page | 771 |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 18 |
creator | Chelaru, Mircea I. Dragoi, Valentin |
description | Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally. |
doi_str_mv | 10.1093/cercor/bhm119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70386315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhm119</oup_id><sourcerecordid>1450217461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTo1cZHsRLXd6kTZrjmB8TpoJOFC8hSzPstjY1adH992Z0KHjxlJeXH0-SB6FjwBeABR1o47R1g9l7ASB2UBdihiMCQuyGGcc8ogSggw68X2AMnCRkH3WAM0GpiLuIDv26KEztct1_WpeqqsNwaSpnvM9t2c_L_si6sFSr_r2pP61b-kO0N1crb462Zw89X19NR-No8nBzOxpOIh0noo6MUISwjGSMZxkjwLIMRBYrTvgshnka3ohFTGhYz3gMKU80N1izVDGjtca0h87a3MrZj8b4Wha512a1UqWxjZcc05RRSP6FBLMEKOcBnv6BC9u4MnxCgkh5CgneoKhF2lnvnZnLyuWFcmsJWG46l23nsu08-JNtaDMrTPartyUHcN4C21T_Zm3vzn1tvn6wckvJOOWJHL--yfHkhdzhdCof6TeWv5ox</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198781507</pqid></control><display><type>article</type><title>Asymmetric Synaptic Depression in Cortical Networks</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Chelaru, Mircea I. ; Dragoi, Valentin</creator><creatorcontrib>Chelaru, Mircea I. ; Dragoi, Valentin</creatorcontrib><description>Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhm119</identifier><identifier>PMID: 17693394</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Action Potentials - physiology ; adaptation ; Adaptation, Physiological - physiology ; Animals ; Excitatory Postsynaptic Potentials - physiology ; Inhibitory Postsynaptic Potentials - physiology ; Macaca ; Models, Neurological ; monkey ; Neural Inhibition - physiology ; Neural Pathways - physiology ; Neuronal Plasticity - physiology ; orientation ; plasticity ; recurrent network ; Synapses - physiology ; visual cortex ; Visual Cortex - cytology ; Visual Cortex - physiology</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2008-04, Vol.18 (4), p.771-788</ispartof><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</citedby><cites>FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17693394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chelaru, Mircea I.</creatorcontrib><creatorcontrib>Dragoi, Valentin</creatorcontrib><title>Asymmetric Synaptic Depression in Cortical Networks</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.</description><subject>Action Potentials - physiology</subject><subject>adaptation</subject><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Inhibitory Postsynaptic Potentials - physiology</subject><subject>Macaca</subject><subject>Models, Neurological</subject><subject>monkey</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>orientation</subject><subject>plasticity</subject><subject>recurrent network</subject><subject>Synapses - physiology</subject><subject>visual cortex</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1LwzAYBvAgipvTo1cZHsRLXd6kTZrjmB8TpoJOFC8hSzPstjY1adH992Z0KHjxlJeXH0-SB6FjwBeABR1o47R1g9l7ASB2UBdihiMCQuyGGcc8ogSggw68X2AMnCRkH3WAM0GpiLuIDv26KEztct1_WpeqqsNwaSpnvM9t2c_L_si6sFSr_r2pP61b-kO0N1crb462Zw89X19NR-No8nBzOxpOIh0noo6MUISwjGSMZxkjwLIMRBYrTvgshnka3ohFTGhYz3gMKU80N1izVDGjtca0h87a3MrZj8b4Wha512a1UqWxjZcc05RRSP6FBLMEKOcBnv6BC9u4MnxCgkh5CgneoKhF2lnvnZnLyuWFcmsJWG46l23nsu08-JNtaDMrTPartyUHcN4C21T_Zm3vzn1tvn6wckvJOOWJHL--yfHkhdzhdCof6TeWv5ox</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Chelaru, Mircea I.</creator><creator>Dragoi, Valentin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Asymmetric Synaptic Depression in Cortical Networks</title><author>Chelaru, Mircea I. ; Dragoi, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>adaptation</topic><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Inhibitory Postsynaptic Potentials - physiology</topic><topic>Macaca</topic><topic>Models, Neurological</topic><topic>monkey</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>orientation</topic><topic>plasticity</topic><topic>recurrent network</topic><topic>Synapses - physiology</topic><topic>visual cortex</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chelaru, Mircea I.</creatorcontrib><creatorcontrib>Dragoi, Valentin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chelaru, Mircea I.</au><au>Dragoi, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Synaptic Depression in Cortical Networks</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>18</volume><issue>4</issue><spage>771</spage><epage>788</epage><pages>771-788</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>17693394</pmid><doi>10.1093/cercor/bhm119</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2008-04, Vol.18 (4), p.771-788 |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_proquest_miscellaneous_70386315 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Action Potentials - physiology adaptation Adaptation, Physiological - physiology Animals Excitatory Postsynaptic Potentials - physiology Inhibitory Postsynaptic Potentials - physiology Macaca Models, Neurological monkey Neural Inhibition - physiology Neural Pathways - physiology Neuronal Plasticity - physiology orientation plasticity recurrent network Synapses - physiology visual cortex Visual Cortex - cytology Visual Cortex - physiology |
title | Asymmetric Synaptic Depression in Cortical Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Synaptic%20Depression%20in%20Cortical%20Networks&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Chelaru,%20Mircea%20I.&rft.date=2008-04-01&rft.volume=18&rft.issue=4&rft.spage=771&rft.epage=788&rft.pages=771-788&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhm119&rft_dat=%3Cproquest_cross%3E1450217461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198781507&rft_id=info:pmid/17693394&rft_oup_id=10.1093/cercor/bhm119&rfr_iscdi=true |