Asymmetric Synaptic Depression in Cortical Networks

Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2008-04, Vol.18 (4), p.771-788
Hauptverfasser: Chelaru, Mircea I., Dragoi, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 4
container_start_page 771
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 18
creator Chelaru, Mircea I.
Dragoi, Valentin
description Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.
doi_str_mv 10.1093/cercor/bhm119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70386315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhm119</oup_id><sourcerecordid>1450217461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTo1cZHsRLXd6kTZrjmB8TpoJOFC8hSzPstjY1adH992Z0KHjxlJeXH0-SB6FjwBeABR1o47R1g9l7ASB2UBdihiMCQuyGGcc8ogSggw68X2AMnCRkH3WAM0GpiLuIDv26KEztct1_WpeqqsNwaSpnvM9t2c_L_si6sFSr_r2pP61b-kO0N1crb462Zw89X19NR-No8nBzOxpOIh0noo6MUISwjGSMZxkjwLIMRBYrTvgshnka3ohFTGhYz3gMKU80N1izVDGjtca0h87a3MrZj8b4Wha512a1UqWxjZcc05RRSP6FBLMEKOcBnv6BC9u4MnxCgkh5CgneoKhF2lnvnZnLyuWFcmsJWG46l23nsu08-JNtaDMrTPartyUHcN4C21T_Zm3vzn1tvn6wckvJOOWJHL--yfHkhdzhdCof6TeWv5ox</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198781507</pqid></control><display><type>article</type><title>Asymmetric Synaptic Depression in Cortical Networks</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Chelaru, Mircea I. ; Dragoi, Valentin</creator><creatorcontrib>Chelaru, Mircea I. ; Dragoi, Valentin</creatorcontrib><description>Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhm119</identifier><identifier>PMID: 17693394</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Action Potentials - physiology ; adaptation ; Adaptation, Physiological - physiology ; Animals ; Excitatory Postsynaptic Potentials - physiology ; Inhibitory Postsynaptic Potentials - physiology ; Macaca ; Models, Neurological ; monkey ; Neural Inhibition - physiology ; Neural Pathways - physiology ; Neuronal Plasticity - physiology ; orientation ; plasticity ; recurrent network ; Synapses - physiology ; visual cortex ; Visual Cortex - cytology ; Visual Cortex - physiology</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2008-04, Vol.18 (4), p.771-788</ispartof><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</citedby><cites>FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17693394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chelaru, Mircea I.</creatorcontrib><creatorcontrib>Dragoi, Valentin</creatorcontrib><title>Asymmetric Synaptic Depression in Cortical Networks</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.</description><subject>Action Potentials - physiology</subject><subject>adaptation</subject><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Inhibitory Postsynaptic Potentials - physiology</subject><subject>Macaca</subject><subject>Models, Neurological</subject><subject>monkey</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>orientation</subject><subject>plasticity</subject><subject>recurrent network</subject><subject>Synapses - physiology</subject><subject>visual cortex</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1LwzAYBvAgipvTo1cZHsRLXd6kTZrjmB8TpoJOFC8hSzPstjY1adH992Z0KHjxlJeXH0-SB6FjwBeABR1o47R1g9l7ASB2UBdihiMCQuyGGcc8ogSggw68X2AMnCRkH3WAM0GpiLuIDv26KEztct1_WpeqqsNwaSpnvM9t2c_L_si6sFSr_r2pP61b-kO0N1crb462Zw89X19NR-No8nBzOxpOIh0noo6MUISwjGSMZxkjwLIMRBYrTvgshnka3ohFTGhYz3gMKU80N1izVDGjtca0h87a3MrZj8b4Wha512a1UqWxjZcc05RRSP6FBLMEKOcBnv6BC9u4MnxCgkh5CgneoKhF2lnvnZnLyuWFcmsJWG46l23nsu08-JNtaDMrTPartyUHcN4C21T_Zm3vzn1tvn6wckvJOOWJHL--yfHkhdzhdCof6TeWv5ox</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Chelaru, Mircea I.</creator><creator>Dragoi, Valentin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Asymmetric Synaptic Depression in Cortical Networks</title><author>Chelaru, Mircea I. ; Dragoi, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-e9a226d2d67dd6216dd19d4a727b41f819909423dd1b741875c7e0c68a6eccc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>adaptation</topic><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Inhibitory Postsynaptic Potentials - physiology</topic><topic>Macaca</topic><topic>Models, Neurological</topic><topic>monkey</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>orientation</topic><topic>plasticity</topic><topic>recurrent network</topic><topic>Synapses - physiology</topic><topic>visual cortex</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chelaru, Mircea I.</creatorcontrib><creatorcontrib>Dragoi, Valentin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chelaru, Mircea I.</au><au>Dragoi, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Synaptic Depression in Cortical Networks</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>18</volume><issue>4</issue><spage>771</spage><epage>788</epage><pages>771-788</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>17693394</pmid><doi>10.1093/cercor/bhm119</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2008-04, Vol.18 (4), p.771-788
issn 1047-3211
1460-2199
language eng
recordid cdi_proquest_miscellaneous_70386315
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Action Potentials - physiology
adaptation
Adaptation, Physiological - physiology
Animals
Excitatory Postsynaptic Potentials - physiology
Inhibitory Postsynaptic Potentials - physiology
Macaca
Models, Neurological
monkey
Neural Inhibition - physiology
Neural Pathways - physiology
Neuronal Plasticity - physiology
orientation
plasticity
recurrent network
Synapses - physiology
visual cortex
Visual Cortex - cytology
Visual Cortex - physiology
title Asymmetric Synaptic Depression in Cortical Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Synaptic%20Depression%20in%20Cortical%20Networks&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Chelaru,%20Mircea%20I.&rft.date=2008-04-01&rft.volume=18&rft.issue=4&rft.spage=771&rft.epage=788&rft.pages=771-788&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhm119&rft_dat=%3Cproquest_cross%3E1450217461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198781507&rft_id=info:pmid/17693394&rft_oup_id=10.1093/cercor/bhm119&rfr_iscdi=true