Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index

Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2008-04, Vol.30 (3), p.329-340
Hauptverfasser: Valencia, Alvaro, Morales, Hernan, Rivera, Rodrigo, Bravo, Eduardo, Galvez, Marcelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 3
container_start_page 329
container_title Medical engineering & physics
container_volume 30
creator Valencia, Alvaro
Morales, Hernan
Rivera, Rodrigo
Bravo, Eduardo
Galvez, Marcelo
description Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.
doi_str_mv 10.1016/j.medengphy.2007.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70383050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S135045330700080X</els_id><sourcerecordid>70383050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</originalsourceid><addsrcrecordid>eNqNkkuP1DAQhCMEYh_wF8AnbhnaYzvOcEBaViwgrcSBReJmOXaH8eA8cCcMufPD8WhGrMQFTu5DVZfVXxXFcw4rDrx6uVt16LH_Om6X1RpAr0CugPMHxTmvtSglCHiYZ6GglEqIs-KCaAcAUlbicXHGtVIVgDovfr2Jw-BZG4c980tvu-CIhZ6NdgrYTyWN6EIbHHOYsEk2MtvjnBbqWDd4jPSK3W2RJYzZMPS0DSNrcNoj9mxvY2S0RZsYTQmJstff-21Cm6M8_nxSPGptJHx6ei-Lzzdv767fl7cf3324vrotnVrzqeTO6kZVXArpEEUjsOZetQqV1dh4LSq7bmQFqnW8qXGjN06jtl7UHlHLVlwWL457xzR8n5Em0wVyGGP-0zCT0SBqAQr-KeQbyYUWIgv1UejSQJSwNWMKnU2L4WAOpMzO_CFlDqQMSJNJZeezU8TcZMW974QmC66Ognxk_BEwGXIZiUMfErrJ-CH8R8jrv3a4GPrgbPyGC9JumFOfD264obUB8-lQmENfQOeu1PBF_AZRncFd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413733</pqid></control><display><type>article</type><title>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Valencia, Alvaro ; Morales, Hernan ; Rivera, Rodrigo ; Bravo, Eduardo ; Galvez, Marcelo</creator><creatorcontrib>Valencia, Alvaro ; Morales, Hernan ; Rivera, Rodrigo ; Bravo, Eduardo ; Galvez, Marcelo</creatorcontrib><description>Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2007.04.011</identifier><identifier>PMID: 17556005</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D rotational angiography ; Aneurysm, Ruptured - diagnostic imaging ; Aneurysm, Ruptured - physiopathology ; Blood flow ; Cerebral aneurysm ; Cerebral Angiography ; Cerebrovascular Circulation ; Circle of Willis - diagnostic imaging ; Circle of Willis - physiopathology ; Computational fluid dynamics ; Computer Simulation ; Elasticity ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional - methods ; Intracranial Aneurysm - blood ; Intracranial Aneurysm - diagnostic imaging ; Intracranial Aneurysm - physiopathology ; Models, Cardiovascular ; Non-Newtonian fluid ; Numerical Analysis, Computer-Assisted ; Radiology ; Rheology ; Stress, Mechanical ; Wall shear stress</subject><ispartof>Medical engineering &amp; physics, 2008-04, Vol.30 (3), p.329-340</ispartof><rights>IPEM</rights><rights>2007 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</citedby><cites>FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2007.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17556005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valencia, Alvaro</creatorcontrib><creatorcontrib>Morales, Hernan</creatorcontrib><creatorcontrib>Rivera, Rodrigo</creatorcontrib><creatorcontrib>Bravo, Eduardo</creatorcontrib><creatorcontrib>Galvez, Marcelo</creatorcontrib><title>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.</description><subject>3D rotational angiography</subject><subject>Aneurysm, Ruptured - diagnostic imaging</subject><subject>Aneurysm, Ruptured - physiopathology</subject><subject>Blood flow</subject><subject>Cerebral aneurysm</subject><subject>Cerebral Angiography</subject><subject>Cerebrovascular Circulation</subject><subject>Circle of Willis - diagnostic imaging</subject><subject>Circle of Willis - physiopathology</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Intracranial Aneurysm - blood</subject><subject>Intracranial Aneurysm - diagnostic imaging</subject><subject>Intracranial Aneurysm - physiopathology</subject><subject>Models, Cardiovascular</subject><subject>Non-Newtonian fluid</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Radiology</subject><subject>Rheology</subject><subject>Stress, Mechanical</subject><subject>Wall shear stress</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuP1DAQhCMEYh_wF8AnbhnaYzvOcEBaViwgrcSBReJmOXaH8eA8cCcMufPD8WhGrMQFTu5DVZfVXxXFcw4rDrx6uVt16LH_Om6X1RpAr0CugPMHxTmvtSglCHiYZ6GglEqIs-KCaAcAUlbicXHGtVIVgDovfr2Jw-BZG4c980tvu-CIhZ6NdgrYTyWN6EIbHHOYsEk2MtvjnBbqWDd4jPSK3W2RJYzZMPS0DSNrcNoj9mxvY2S0RZsYTQmJstff-21Cm6M8_nxSPGptJHx6ei-Lzzdv767fl7cf3324vrotnVrzqeTO6kZVXArpEEUjsOZetQqV1dh4LSq7bmQFqnW8qXGjN06jtl7UHlHLVlwWL457xzR8n5Em0wVyGGP-0zCT0SBqAQr-KeQbyYUWIgv1UejSQJSwNWMKnU2L4WAOpMzO_CFlDqQMSJNJZeezU8TcZMW974QmC66Ognxk_BEwGXIZiUMfErrJ-CH8R8jrv3a4GPrgbPyGC9JumFOfD264obUB8-lQmENfQOeu1PBF_AZRncFd</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Valencia, Alvaro</creator><creator>Morales, Hernan</creator><creator>Rivera, Rodrigo</creator><creator>Bravo, Eduardo</creator><creator>Galvez, Marcelo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</title><author>Valencia, Alvaro ; Morales, Hernan ; Rivera, Rodrigo ; Bravo, Eduardo ; Galvez, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3D rotational angiography</topic><topic>Aneurysm, Ruptured - diagnostic imaging</topic><topic>Aneurysm, Ruptured - physiopathology</topic><topic>Blood flow</topic><topic>Cerebral aneurysm</topic><topic>Cerebral Angiography</topic><topic>Cerebrovascular Circulation</topic><topic>Circle of Willis - diagnostic imaging</topic><topic>Circle of Willis - physiopathology</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Intracranial Aneurysm - blood</topic><topic>Intracranial Aneurysm - diagnostic imaging</topic><topic>Intracranial Aneurysm - physiopathology</topic><topic>Models, Cardiovascular</topic><topic>Non-Newtonian fluid</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Radiology</topic><topic>Rheology</topic><topic>Stress, Mechanical</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valencia, Alvaro</creatorcontrib><creatorcontrib>Morales, Hernan</creatorcontrib><creatorcontrib>Rivera, Rodrigo</creatorcontrib><creatorcontrib>Bravo, Eduardo</creatorcontrib><creatorcontrib>Galvez, Marcelo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valencia, Alvaro</au><au>Morales, Hernan</au><au>Rivera, Rodrigo</au><au>Bravo, Eduardo</au><au>Galvez, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>329</spage><epage>340</epage><pages>329-340</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17556005</pmid><doi>10.1016/j.medengphy.2007.04.011</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2008-04, Vol.30 (3), p.329-340
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_70383050
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 3D rotational angiography
Aneurysm, Ruptured - diagnostic imaging
Aneurysm, Ruptured - physiopathology
Blood flow
Cerebral aneurysm
Cerebral Angiography
Cerebrovascular Circulation
Circle of Willis - diagnostic imaging
Circle of Willis - physiopathology
Computational fluid dynamics
Computer Simulation
Elasticity
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional - methods
Intracranial Aneurysm - blood
Intracranial Aneurysm - diagnostic imaging
Intracranial Aneurysm - physiopathology
Models, Cardiovascular
Non-Newtonian fluid
Numerical Analysis, Computer-Assisted
Radiology
Rheology
Stress, Mechanical
Wall shear stress
title Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20flow%20dynamics%20in%20patient-specific%20cerebral%20aneurysm%20models:%20The%20relationship%20between%20wall%20shear%20stress%20and%20aneurysm%20area%20index&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Valencia,%20Alvaro&rft.date=2008-04-01&rft.volume=30&rft.issue=3&rft.spage=329&rft.epage=340&rft.pages=329-340&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2007.04.011&rft_dat=%3Cproquest_cross%3E70383050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413733&rft_id=info:pmid/17556005&rft_els_id=1_s2_0_S135045330700080X&rfr_iscdi=true