Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index
Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the b...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2008-04, Vol.30 (3), p.329-340 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 340 |
---|---|
container_issue | 3 |
container_start_page | 329 |
container_title | Medical engineering & physics |
container_volume | 30 |
creator | Valencia, Alvaro Morales, Hernan Rivera, Rodrigo Bravo, Eduardo Galvez, Marcelo |
description | Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively. |
doi_str_mv | 10.1016/j.medengphy.2007.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70383050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S135045330700080X</els_id><sourcerecordid>70383050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</originalsourceid><addsrcrecordid>eNqNkkuP1DAQhCMEYh_wF8AnbhnaYzvOcEBaViwgrcSBReJmOXaH8eA8cCcMufPD8WhGrMQFTu5DVZfVXxXFcw4rDrx6uVt16LH_Om6X1RpAr0CugPMHxTmvtSglCHiYZ6GglEqIs-KCaAcAUlbicXHGtVIVgDovfr2Jw-BZG4c980tvu-CIhZ6NdgrYTyWN6EIbHHOYsEk2MtvjnBbqWDd4jPSK3W2RJYzZMPS0DSNrcNoj9mxvY2S0RZsYTQmJstff-21Cm6M8_nxSPGptJHx6ei-Lzzdv767fl7cf3324vrotnVrzqeTO6kZVXArpEEUjsOZetQqV1dh4LSq7bmQFqnW8qXGjN06jtl7UHlHLVlwWL457xzR8n5Em0wVyGGP-0zCT0SBqAQr-KeQbyYUWIgv1UejSQJSwNWMKnU2L4WAOpMzO_CFlDqQMSJNJZeezU8TcZMW974QmC66Ognxk_BEwGXIZiUMfErrJ-CH8R8jrv3a4GPrgbPyGC9JumFOfD264obUB8-lQmENfQOeu1PBF_AZRncFd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19413733</pqid></control><display><type>article</type><title>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Valencia, Alvaro ; Morales, Hernan ; Rivera, Rodrigo ; Bravo, Eduardo ; Galvez, Marcelo</creator><creatorcontrib>Valencia, Alvaro ; Morales, Hernan ; Rivera, Rodrigo ; Bravo, Eduardo ; Galvez, Marcelo</creatorcontrib><description>Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2007.04.011</identifier><identifier>PMID: 17556005</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D rotational angiography ; Aneurysm, Ruptured - diagnostic imaging ; Aneurysm, Ruptured - physiopathology ; Blood flow ; Cerebral aneurysm ; Cerebral Angiography ; Cerebrovascular Circulation ; Circle of Willis - diagnostic imaging ; Circle of Willis - physiopathology ; Computational fluid dynamics ; Computer Simulation ; Elasticity ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional - methods ; Intracranial Aneurysm - blood ; Intracranial Aneurysm - diagnostic imaging ; Intracranial Aneurysm - physiopathology ; Models, Cardiovascular ; Non-Newtonian fluid ; Numerical Analysis, Computer-Assisted ; Radiology ; Rheology ; Stress, Mechanical ; Wall shear stress</subject><ispartof>Medical engineering & physics, 2008-04, Vol.30 (3), p.329-340</ispartof><rights>IPEM</rights><rights>2007 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</citedby><cites>FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2007.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17556005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valencia, Alvaro</creatorcontrib><creatorcontrib>Morales, Hernan</creatorcontrib><creatorcontrib>Rivera, Rodrigo</creatorcontrib><creatorcontrib>Bravo, Eduardo</creatorcontrib><creatorcontrib>Galvez, Marcelo</creatorcontrib><title>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</title><title>Medical engineering & physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.</description><subject>3D rotational angiography</subject><subject>Aneurysm, Ruptured - diagnostic imaging</subject><subject>Aneurysm, Ruptured - physiopathology</subject><subject>Blood flow</subject><subject>Cerebral aneurysm</subject><subject>Cerebral Angiography</subject><subject>Cerebrovascular Circulation</subject><subject>Circle of Willis - diagnostic imaging</subject><subject>Circle of Willis - physiopathology</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Intracranial Aneurysm - blood</subject><subject>Intracranial Aneurysm - diagnostic imaging</subject><subject>Intracranial Aneurysm - physiopathology</subject><subject>Models, Cardiovascular</subject><subject>Non-Newtonian fluid</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Radiology</subject><subject>Rheology</subject><subject>Stress, Mechanical</subject><subject>Wall shear stress</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuP1DAQhCMEYh_wF8AnbhnaYzvOcEBaViwgrcSBReJmOXaH8eA8cCcMufPD8WhGrMQFTu5DVZfVXxXFcw4rDrx6uVt16LH_Om6X1RpAr0CugPMHxTmvtSglCHiYZ6GglEqIs-KCaAcAUlbicXHGtVIVgDovfr2Jw-BZG4c980tvu-CIhZ6NdgrYTyWN6EIbHHOYsEk2MtvjnBbqWDd4jPSK3W2RJYzZMPS0DSNrcNoj9mxvY2S0RZsYTQmJstff-21Cm6M8_nxSPGptJHx6ei-Lzzdv767fl7cf3324vrotnVrzqeTO6kZVXArpEEUjsOZetQqV1dh4LSq7bmQFqnW8qXGjN06jtl7UHlHLVlwWL457xzR8n5Em0wVyGGP-0zCT0SBqAQr-KeQbyYUWIgv1UejSQJSwNWMKnU2L4WAOpMzO_CFlDqQMSJNJZeezU8TcZMW974QmC66Ognxk_BEwGXIZiUMfErrJ-CH8R8jrv3a4GPrgbPyGC9JumFOfD264obUB8-lQmENfQOeu1PBF_AZRncFd</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Valencia, Alvaro</creator><creator>Morales, Hernan</creator><creator>Rivera, Rodrigo</creator><creator>Bravo, Eduardo</creator><creator>Galvez, Marcelo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</title><author>Valencia, Alvaro ; Morales, Hernan ; Rivera, Rodrigo ; Bravo, Eduardo ; Galvez, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-1ca7b561434cee3b3e81d5f5e5a7ebd736a2b4605fc1b8e979c7e7ad38dee74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3D rotational angiography</topic><topic>Aneurysm, Ruptured - diagnostic imaging</topic><topic>Aneurysm, Ruptured - physiopathology</topic><topic>Blood flow</topic><topic>Cerebral aneurysm</topic><topic>Cerebral Angiography</topic><topic>Cerebrovascular Circulation</topic><topic>Circle of Willis - diagnostic imaging</topic><topic>Circle of Willis - physiopathology</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Intracranial Aneurysm - blood</topic><topic>Intracranial Aneurysm - diagnostic imaging</topic><topic>Intracranial Aneurysm - physiopathology</topic><topic>Models, Cardiovascular</topic><topic>Non-Newtonian fluid</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Radiology</topic><topic>Rheology</topic><topic>Stress, Mechanical</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valencia, Alvaro</creatorcontrib><creatorcontrib>Morales, Hernan</creatorcontrib><creatorcontrib>Rivera, Rodrigo</creatorcontrib><creatorcontrib>Bravo, Eduardo</creatorcontrib><creatorcontrib>Galvez, Marcelo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering & physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valencia, Alvaro</au><au>Morales, Hernan</au><au>Rivera, Rodrigo</au><au>Bravo, Eduardo</au><au>Galvez, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index</atitle><jtitle>Medical engineering & physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>329</spage><epage>340</epage><pages>329-340</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17556005</pmid><doi>10.1016/j.medengphy.2007.04.011</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4533 |
ispartof | Medical engineering & physics, 2008-04, Vol.30 (3), p.329-340 |
issn | 1350-4533 1873-4030 |
language | eng |
recordid | cdi_proquest_miscellaneous_70383050 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | 3D rotational angiography Aneurysm, Ruptured - diagnostic imaging Aneurysm, Ruptured - physiopathology Blood flow Cerebral aneurysm Cerebral Angiography Cerebrovascular Circulation Circle of Willis - diagnostic imaging Circle of Willis - physiopathology Computational fluid dynamics Computer Simulation Elasticity Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional - methods Intracranial Aneurysm - blood Intracranial Aneurysm - diagnostic imaging Intracranial Aneurysm - physiopathology Models, Cardiovascular Non-Newtonian fluid Numerical Analysis, Computer-Assisted Radiology Rheology Stress, Mechanical Wall shear stress |
title | Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20flow%20dynamics%20in%20patient-specific%20cerebral%20aneurysm%20models:%20The%20relationship%20between%20wall%20shear%20stress%20and%20aneurysm%20area%20index&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Valencia,%20Alvaro&rft.date=2008-04-01&rft.volume=30&rft.issue=3&rft.spage=329&rft.epage=340&rft.pages=329-340&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2007.04.011&rft_dat=%3Cproquest_cross%3E70383050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19413733&rft_id=info:pmid/17556005&rft_els_id=1_s2_0_S135045330700080X&rfr_iscdi=true |