Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography

Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2008-04, Vol.30 (3), p.367-372
Hauptverfasser: Giansanti, Daniele, Maccioni, Giovanni, Cesinaro, Stefano, Benvenuti, Francesco, Macellari, Velio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 3
container_start_page 367
container_title Medical engineering & physics
container_volume 30
creator Giansanti, Daniele
Maccioni, Giovanni
Cesinaro, Stefano
Benvenuti, Francesco
Macellari, Velio
description Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (>0.854).
doi_str_mv 10.1016/j.medengphy.2007.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70380223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453307000653</els_id><sourcerecordid>70380223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</originalsourceid><addsrcrecordid>eNqNUk2P1DAMrRCIXRb-AuTErcVJ2qS9II1Wy4e0EgfgHKWpO2S2TUvS7mrEn8dlRiBxgZMt-_k9y89Z9opDwYGrN4dixA7Dfv52LASALqAsANSj7JLXWuYlSHhMuawgLyspL7JnKR0AoCyVfJpdcF0pqEV1mf3YpYQpjRgWNvWst8OQR5_uWHtkI9qQtqplAddoBwrLwxSpaRN2bApsttGOuGBMzP4iojJNWvaA1GkHZB3ee0dhjT7s2TylZY3TPlra_Hn2hPQSvjjHq-zru5sv1x_y20_vP17vbnNXCb7kjRJVLyquue0Edry2SAkIUfeip1rdVk3FW4lOKqucKoHrnncouVaONyivstcn3jlO31dMixl9cjgMNuC0JqNB1kQn_wnkjdR1oxUB9Qno4pRSxN7M0Y82Hg0HsxlkDua3QWYzyEBpyCCafHmWWFtC_Jk7O0KA3QmAdJF7j9Ek5zE47HxEt5hu8v8h8vYvDjf44J0d7vCI6TCtMdDBDTdJGDCftz_Z3gQ0vYii5Cejjrye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19378976</pqid></control><display><type>article</type><title>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Giansanti, Daniele ; Maccioni, Giovanni ; Cesinaro, Stefano ; Benvenuti, Francesco ; Macellari, Velio</creator><creatorcontrib>Giansanti, Daniele ; Maccioni, Giovanni ; Cesinaro, Stefano ; Benvenuti, Francesco ; Macellari, Velio</creatorcontrib><description>Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (&gt;0.854).</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2007.04.006</identifier><identifier>PMID: 17560825</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acceleration ; Accelerometer ; Accidental Falls - statistics &amp; numerical data ; Accuracy ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial Intelligence ; Back - physiology ; Biomechanical Phenomena - methods ; Evaluation Studies as Topic ; Fall prevention ; Fall-risk ; Female ; Gyroscopes ; Human movement analysis ; Humans ; Male ; Middle Aged ; Neural networks ; Neural Networks (Computer) ; Patient-monitoring ; Postural Balance ; Posture - physiology ; Radiology ; Risk Assessment - methods ; Risk Factors ; ROC Curve ; Rotation ; Transducers</subject><ispartof>Medical engineering &amp; physics, 2008-04, Vol.30 (3), p.367-372</ispartof><rights>IPEM</rights><rights>2007 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</citedby><cites>FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2007.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17560825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giansanti, Daniele</creatorcontrib><creatorcontrib>Maccioni, Giovanni</creatorcontrib><creatorcontrib>Cesinaro, Stefano</creatorcontrib><creatorcontrib>Benvenuti, Francesco</creatorcontrib><creatorcontrib>Macellari, Velio</creatorcontrib><title>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (&gt;0.854).</description><subject>Acceleration</subject><subject>Accelerometer</subject><subject>Accidental Falls - statistics &amp; numerical data</subject><subject>Accuracy</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Back - physiology</subject><subject>Biomechanical Phenomena - methods</subject><subject>Evaluation Studies as Topic</subject><subject>Fall prevention</subject><subject>Fall-risk</subject><subject>Female</subject><subject>Gyroscopes</subject><subject>Human movement analysis</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Patient-monitoring</subject><subject>Postural Balance</subject><subject>Posture - physiology</subject><subject>Radiology</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Rotation</subject><subject>Transducers</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P1DAMrRCIXRb-AuTErcVJ2qS9II1Wy4e0EgfgHKWpO2S2TUvS7mrEn8dlRiBxgZMt-_k9y89Z9opDwYGrN4dixA7Dfv52LASALqAsANSj7JLXWuYlSHhMuawgLyspL7JnKR0AoCyVfJpdcF0pqEV1mf3YpYQpjRgWNvWst8OQR5_uWHtkI9qQtqplAddoBwrLwxSpaRN2bApsttGOuGBMzP4iojJNWvaA1GkHZB3ee0dhjT7s2TylZY3TPlra_Hn2hPQSvjjHq-zru5sv1x_y20_vP17vbnNXCb7kjRJVLyquue0Edry2SAkIUfeip1rdVk3FW4lOKqucKoHrnncouVaONyivstcn3jlO31dMixl9cjgMNuC0JqNB1kQn_wnkjdR1oxUB9Qno4pRSxN7M0Y82Hg0HsxlkDua3QWYzyEBpyCCafHmWWFtC_Jk7O0KA3QmAdJF7j9Ek5zE47HxEt5hu8v8h8vYvDjf44J0d7vCI6TCtMdDBDTdJGDCftz_Z3gQ0vYii5Cejjrye</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Giansanti, Daniele</creator><creator>Maccioni, Giovanni</creator><creator>Cesinaro, Stefano</creator><creator>Benvenuti, Francesco</creator><creator>Macellari, Velio</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</title><author>Giansanti, Daniele ; Maccioni, Giovanni ; Cesinaro, Stefano ; Benvenuti, Francesco ; Macellari, Velio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Accelerometer</topic><topic>Accidental Falls - statistics &amp; numerical data</topic><topic>Accuracy</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Back - physiology</topic><topic>Biomechanical Phenomena - methods</topic><topic>Evaluation Studies as Topic</topic><topic>Fall prevention</topic><topic>Fall-risk</topic><topic>Female</topic><topic>Gyroscopes</topic><topic>Human movement analysis</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Patient-monitoring</topic><topic>Postural Balance</topic><topic>Posture - physiology</topic><topic>Radiology</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Rotation</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giansanti, Daniele</creatorcontrib><creatorcontrib>Maccioni, Giovanni</creatorcontrib><creatorcontrib>Cesinaro, Stefano</creatorcontrib><creatorcontrib>Benvenuti, Francesco</creatorcontrib><creatorcontrib>Macellari, Velio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giansanti, Daniele</au><au>Maccioni, Giovanni</au><au>Cesinaro, Stefano</au><au>Benvenuti, Francesco</au><au>Macellari, Velio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (&gt;0.854).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17560825</pmid><doi>10.1016/j.medengphy.2007.04.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2008-04, Vol.30 (3), p.367-372
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_70380223
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acceleration
Accelerometer
Accidental Falls - statistics & numerical data
Accuracy
Adult
Aged
Aged, 80 and over
Algorithms
Artificial Intelligence
Back - physiology
Biomechanical Phenomena - methods
Evaluation Studies as Topic
Fall prevention
Fall-risk
Female
Gyroscopes
Human movement analysis
Humans
Male
Middle Aged
Neural networks
Neural Networks (Computer)
Patient-monitoring
Postural Balance
Posture - physiology
Radiology
Risk Assessment - methods
Risk Factors
ROC Curve
Rotation
Transducers
title Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20fall-risk%20by%20means%20of%20a%20neural%20network%20based%20on%20parameters%20assessed%20by%20a%20wearable%20device%20during%20posturography&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Giansanti,%20Daniele&rft.date=2008-04-01&rft.volume=30&rft.issue=3&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2007.04.006&rft_dat=%3Cproquest_cross%3E70380223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19378976&rft_id=info:pmid/17560825&rft_els_id=S1350453307000653&rfr_iscdi=true