Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography
Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly su...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2008-04, Vol.30 (3), p.367-372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 3 |
container_start_page | 367 |
container_title | Medical engineering & physics |
container_volume | 30 |
creator | Giansanti, Daniele Maccioni, Giovanni Cesinaro, Stefano Benvenuti, Francesco Macellari, Velio |
description | Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (>0.854). |
doi_str_mv | 10.1016/j.medengphy.2007.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70380223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453307000653</els_id><sourcerecordid>70380223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</originalsourceid><addsrcrecordid>eNqNUk2P1DAMrRCIXRb-AuTErcVJ2qS9II1Wy4e0EgfgHKWpO2S2TUvS7mrEn8dlRiBxgZMt-_k9y89Z9opDwYGrN4dixA7Dfv52LASALqAsANSj7JLXWuYlSHhMuawgLyspL7JnKR0AoCyVfJpdcF0pqEV1mf3YpYQpjRgWNvWst8OQR5_uWHtkI9qQtqplAddoBwrLwxSpaRN2bApsttGOuGBMzP4iojJNWvaA1GkHZB3ee0dhjT7s2TylZY3TPlra_Hn2hPQSvjjHq-zru5sv1x_y20_vP17vbnNXCb7kjRJVLyquue0Edry2SAkIUfeip1rdVk3FW4lOKqucKoHrnncouVaONyivstcn3jlO31dMixl9cjgMNuC0JqNB1kQn_wnkjdR1oxUB9Qno4pRSxN7M0Y82Hg0HsxlkDua3QWYzyEBpyCCafHmWWFtC_Jk7O0KA3QmAdJF7j9Ek5zE47HxEt5hu8v8h8vYvDjf44J0d7vCI6TCtMdDBDTdJGDCftz_Z3gQ0vYii5Cejjrye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19378976</pqid></control><display><type>article</type><title>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Giansanti, Daniele ; Maccioni, Giovanni ; Cesinaro, Stefano ; Benvenuti, Francesco ; Macellari, Velio</creator><creatorcontrib>Giansanti, Daniele ; Maccioni, Giovanni ; Cesinaro, Stefano ; Benvenuti, Francesco ; Macellari, Velio</creatorcontrib><description>Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (>0.854).</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2007.04.006</identifier><identifier>PMID: 17560825</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acceleration ; Accelerometer ; Accidental Falls - statistics & numerical data ; Accuracy ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial Intelligence ; Back - physiology ; Biomechanical Phenomena - methods ; Evaluation Studies as Topic ; Fall prevention ; Fall-risk ; Female ; Gyroscopes ; Human movement analysis ; Humans ; Male ; Middle Aged ; Neural networks ; Neural Networks (Computer) ; Patient-monitoring ; Postural Balance ; Posture - physiology ; Radiology ; Risk Assessment - methods ; Risk Factors ; ROC Curve ; Rotation ; Transducers</subject><ispartof>Medical engineering & physics, 2008-04, Vol.30 (3), p.367-372</ispartof><rights>IPEM</rights><rights>2007 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</citedby><cites>FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2007.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17560825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giansanti, Daniele</creatorcontrib><creatorcontrib>Maccioni, Giovanni</creatorcontrib><creatorcontrib>Cesinaro, Stefano</creatorcontrib><creatorcontrib>Benvenuti, Francesco</creatorcontrib><creatorcontrib>Macellari, Velio</creatorcontrib><title>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</title><title>Medical engineering & physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (>0.854).</description><subject>Acceleration</subject><subject>Accelerometer</subject><subject>Accidental Falls - statistics & numerical data</subject><subject>Accuracy</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Back - physiology</subject><subject>Biomechanical Phenomena - methods</subject><subject>Evaluation Studies as Topic</subject><subject>Fall prevention</subject><subject>Fall-risk</subject><subject>Female</subject><subject>Gyroscopes</subject><subject>Human movement analysis</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Patient-monitoring</subject><subject>Postural Balance</subject><subject>Posture - physiology</subject><subject>Radiology</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Rotation</subject><subject>Transducers</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P1DAMrRCIXRb-AuTErcVJ2qS9II1Wy4e0EgfgHKWpO2S2TUvS7mrEn8dlRiBxgZMt-_k9y89Z9opDwYGrN4dixA7Dfv52LASALqAsANSj7JLXWuYlSHhMuawgLyspL7JnKR0AoCyVfJpdcF0pqEV1mf3YpYQpjRgWNvWst8OQR5_uWHtkI9qQtqplAddoBwrLwxSpaRN2bApsttGOuGBMzP4iojJNWvaA1GkHZB3ee0dhjT7s2TylZY3TPlra_Hn2hPQSvjjHq-zru5sv1x_y20_vP17vbnNXCb7kjRJVLyquue0Edry2SAkIUfeip1rdVk3FW4lOKqucKoHrnncouVaONyivstcn3jlO31dMixl9cjgMNuC0JqNB1kQn_wnkjdR1oxUB9Qno4pRSxN7M0Y82Hg0HsxlkDua3QWYzyEBpyCCafHmWWFtC_Jk7O0KA3QmAdJF7j9Ek5zE47HxEt5hu8v8h8vYvDjf44J0d7vCI6TCtMdDBDTdJGDCftz_Z3gQ0vYii5Cejjrye</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Giansanti, Daniele</creator><creator>Maccioni, Giovanni</creator><creator>Cesinaro, Stefano</creator><creator>Benvenuti, Francesco</creator><creator>Macellari, Velio</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</title><author>Giansanti, Daniele ; Maccioni, Giovanni ; Cesinaro, Stefano ; Benvenuti, Francesco ; Macellari, Velio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-9625f25171ad2ed18aead20228f2f1ad8b5951b3ec36a6c64017f1de3176c19e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Accelerometer</topic><topic>Accidental Falls - statistics & numerical data</topic><topic>Accuracy</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Back - physiology</topic><topic>Biomechanical Phenomena - methods</topic><topic>Evaluation Studies as Topic</topic><topic>Fall prevention</topic><topic>Fall-risk</topic><topic>Female</topic><topic>Gyroscopes</topic><topic>Human movement analysis</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Patient-monitoring</topic><topic>Postural Balance</topic><topic>Posture - physiology</topic><topic>Radiology</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Rotation</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giansanti, Daniele</creatorcontrib><creatorcontrib>Maccioni, Giovanni</creatorcontrib><creatorcontrib>Cesinaro, Stefano</creatorcontrib><creatorcontrib>Benvenuti, Francesco</creatorcontrib><creatorcontrib>Macellari, Velio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering & physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giansanti, Daniele</au><au>Maccioni, Giovanni</au><au>Cesinaro, Stefano</au><au>Benvenuti, Francesco</au><au>Macellari, Velio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography</atitle><jtitle>Medical engineering & physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract We have investigated the use of an Artificial Neural Network (ANN) for the assessment of fall-risk (FR) in patients with different neural pathologies. The assessment integrates a clinical tool based on a wearable device (WD) with accelerometers (ACCs) and rate gyroscopes (GYROs) properly suited to identify trunk kinematic parameters that can be measured during a posturography test with different constraints. Our ANN – a Multi Layer Perceptron Neural Network with four layers and 272 neurones – shows to be able to classify patients in three well-known fall-risk levels. The training of the neural network was carried on three groups of 30 subjects with different Fall-Risk Tinetti scores. The validation of our neural network was carried out on three groups of 100 subjects with different Fall-Risk Tinetti scores and this validation demonstrated that the neural network had high specificity (≥0.88); sensitivity (≥0.87); area under Receiver-Operator Characteristic Curves (>0.854).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17560825</pmid><doi>10.1016/j.medengphy.2007.04.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4533 |
ispartof | Medical engineering & physics, 2008-04, Vol.30 (3), p.367-372 |
issn | 1350-4533 1873-4030 |
language | eng |
recordid | cdi_proquest_miscellaneous_70380223 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acceleration Accelerometer Accidental Falls - statistics & numerical data Accuracy Adult Aged Aged, 80 and over Algorithms Artificial Intelligence Back - physiology Biomechanical Phenomena - methods Evaluation Studies as Topic Fall prevention Fall-risk Female Gyroscopes Human movement analysis Humans Male Middle Aged Neural networks Neural Networks (Computer) Patient-monitoring Postural Balance Posture - physiology Radiology Risk Assessment - methods Risk Factors ROC Curve Rotation Transducers |
title | Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20fall-risk%20by%20means%20of%20a%20neural%20network%20based%20on%20parameters%20assessed%20by%20a%20wearable%20device%20during%20posturography&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Giansanti,%20Daniele&rft.date=2008-04-01&rft.volume=30&rft.issue=3&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2007.04.006&rft_dat=%3Cproquest_cross%3E70380223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19378976&rft_id=info:pmid/17560825&rft_els_id=S1350453307000653&rfr_iscdi=true |