Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process

Heavy metals and suspended solid (SS) needed to be removed from the recirculation of dual-alkali flue gas desulfurization (FGD) system. The feasibility of coprecipitation of heavy metal and SS by water-soluble chitosan was studied in a lab scale experiment. The association between chitosan and metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2008-04, Vol.152 (2), p.757-764
Hauptverfasser: Wu, Zhong-Biao, Ni, Wei-Min, Guan, Bao-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 2
container_start_page 757
container_title Journal of hazardous materials
container_volume 152
creator Wu, Zhong-Biao
Ni, Wei-Min
Guan, Bao-Hong
description Heavy metals and suspended solid (SS) needed to be removed from the recirculation of dual-alkali flue gas desulfurization (FGD) system. The feasibility of coprecipitation of heavy metal and SS by water-soluble chitosan was studied in a lab scale experiment. The association between chitosan and metal ions was verified through DSC and FT-IR. The pH investigation revealed that at the pH ranged from 5 to 9, there were three stages for different actions: adsorption of chitosan for Mn(II), precipitation of manganese hydroxide and coprecipitation of manganese hydroxide and chitosan–Mn(II) complex. The ion selectivity experiments showed that the occurrence of Ca(II) in the solution had little influence on the adsorption of chitosan for Mn(II). The decrease rate of adsorption capacity was about 0.0023 mmol g −1 per 1 mg L −1 Ca(II). When adsorption and flocculation of chitosan occurred at the same time and at the sufficient addition of chitosan, chitosan not only made solids flocculate but also enhanced sorption capacity of chitosan. Application of chitosan for coprecipitation of Mn(II) and SS could remove Mn(II) efficiently and improve the settling characteristics of SS from dual-alkali FGD regenerating process.
doi_str_mv 10.1016/j.jhazmat.2007.07.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70377282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389407010722</els_id><sourcerecordid>19683157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-54a2077fc5b8da3e8bc44d94714b02e6a1a4b522fd0e75e8861002e2b54bb25b3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEokvhJ4B8AZVDFn_G3hOqWlpWKuICZ8txJq0Xxw52ggRHfjmONirHlUayNXpm5p15q-o1wVuCSfPhsD08mD-DmbYUY7ldgtMn1YYoyWrGWPO02mCGec3Ujp9VL3I-YIyJFPx5dUakbLhifFP9vRxH76yZXAwo9sg-uClmE5DJqPfR2tmbMKE-JmTjmMC60U2P9Jdwsd-_RyZ0KM95hNBB-UXvulKd4oC62fja-B_GO3Rze40S3EOAVBqEezSmaCHnl9Wz3vgMr9b3vPp-8-nb1ef67uvt_uryrrZ810y14IZiKXsrWtUZBqq1nHc7LglvMYXGEMNbQWnfYZAClGoILnnaCt62VLTsvHp37Fvm_pwhT3pw2YIvC0Kcs5aYSUkVPQkyKhrKFDsJkl2jGBGygOII2hRzTtDrMbnBpN-aYL3YqQ96tVMvduol-KLkzTpgbgfo_let_hXg7QqYbI3vkwnW5UeO4iKB7xbu45GDcuBfDpLO1kGw0Lni6aS76E5I-QegO8Gq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19683157</pqid></control><display><type>article</type><title>Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wu, Zhong-Biao ; Ni, Wei-Min ; Guan, Bao-Hong</creator><creatorcontrib>Wu, Zhong-Biao ; Ni, Wei-Min ; Guan, Bao-Hong</creatorcontrib><description>Heavy metals and suspended solid (SS) needed to be removed from the recirculation of dual-alkali flue gas desulfurization (FGD) system. The feasibility of coprecipitation of heavy metal and SS by water-soluble chitosan was studied in a lab scale experiment. The association between chitosan and metal ions was verified through DSC and FT-IR. The pH investigation revealed that at the pH ranged from 5 to 9, there were three stages for different actions: adsorption of chitosan for Mn(II), precipitation of manganese hydroxide and coprecipitation of manganese hydroxide and chitosan–Mn(II) complex. The ion selectivity experiments showed that the occurrence of Ca(II) in the solution had little influence on the adsorption of chitosan for Mn(II). The decrease rate of adsorption capacity was about 0.0023 mmol g −1 per 1 mg L −1 Ca(II). When adsorption and flocculation of chitosan occurred at the same time and at the sufficient addition of chitosan, chitosan not only made solids flocculate but also enhanced sorption capacity of chitosan. Application of chitosan for coprecipitation of Mn(II) and SS could remove Mn(II) efficiently and improve the settling characteristics of SS from dual-alkali FGD regenerating process.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2007.07.042</identifier><identifier>PMID: 17764834</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Atmospheric pollution ; Chelating Agents ; Chemical engineering ; Chemical Precipitation ; Chitosan ; Coal ; Dual-alkali FGD ; Exact sciences and technology ; Flocculation ; General processes of purification and dust removal ; Incineration ; Liquid-liquid and fluid-solid mechanical separations ; Manganese ; Manganese - isolation &amp; purification ; Metals, Heavy - isolation &amp; purification ; Pollution ; Power Plants ; Prevention and purification methods ; Settling</subject><ispartof>Journal of hazardous materials, 2008-04, Vol.152 (2), p.757-764</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-54a2077fc5b8da3e8bc44d94714b02e6a1a4b522fd0e75e8861002e2b54bb25b3</citedby><cites>FETCH-LOGICAL-c496t-54a2077fc5b8da3e8bc44d94714b02e6a1a4b522fd0e75e8861002e2b54bb25b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389407010722$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20196494$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17764834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhong-Biao</creatorcontrib><creatorcontrib>Ni, Wei-Min</creatorcontrib><creatorcontrib>Guan, Bao-Hong</creatorcontrib><title>Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Heavy metals and suspended solid (SS) needed to be removed from the recirculation of dual-alkali flue gas desulfurization (FGD) system. The feasibility of coprecipitation of heavy metal and SS by water-soluble chitosan was studied in a lab scale experiment. The association between chitosan and metal ions was verified through DSC and FT-IR. The pH investigation revealed that at the pH ranged from 5 to 9, there were three stages for different actions: adsorption of chitosan for Mn(II), precipitation of manganese hydroxide and coprecipitation of manganese hydroxide and chitosan–Mn(II) complex. The ion selectivity experiments showed that the occurrence of Ca(II) in the solution had little influence on the adsorption of chitosan for Mn(II). The decrease rate of adsorption capacity was about 0.0023 mmol g −1 per 1 mg L −1 Ca(II). When adsorption and flocculation of chitosan occurred at the same time and at the sufficient addition of chitosan, chitosan not only made solids flocculate but also enhanced sorption capacity of chitosan. Application of chitosan for coprecipitation of Mn(II) and SS could remove Mn(II) efficiently and improve the settling characteristics of SS from dual-alkali FGD regenerating process.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chelating Agents</subject><subject>Chemical engineering</subject><subject>Chemical Precipitation</subject><subject>Chitosan</subject><subject>Coal</subject><subject>Dual-alkali FGD</subject><subject>Exact sciences and technology</subject><subject>Flocculation</subject><subject>General processes of purification and dust removal</subject><subject>Incineration</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Manganese</subject><subject>Manganese - isolation &amp; purification</subject><subject>Metals, Heavy - isolation &amp; purification</subject><subject>Pollution</subject><subject>Power Plants</subject><subject>Prevention and purification methods</subject><subject>Settling</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEokvhJ4B8AZVDFn_G3hOqWlpWKuICZ8txJq0Xxw52ggRHfjmONirHlUayNXpm5p15q-o1wVuCSfPhsD08mD-DmbYUY7ldgtMn1YYoyWrGWPO02mCGec3Ujp9VL3I-YIyJFPx5dUakbLhifFP9vRxH76yZXAwo9sg-uClmE5DJqPfR2tmbMKE-JmTjmMC60U2P9Jdwsd-_RyZ0KM95hNBB-UXvulKd4oC62fja-B_GO3Rze40S3EOAVBqEezSmaCHnl9Wz3vgMr9b3vPp-8-nb1ef67uvt_uryrrZ810y14IZiKXsrWtUZBqq1nHc7LglvMYXGEMNbQWnfYZAClGoILnnaCt62VLTsvHp37Fvm_pwhT3pw2YIvC0Kcs5aYSUkVPQkyKhrKFDsJkl2jGBGygOII2hRzTtDrMbnBpN-aYL3YqQ96tVMvduol-KLkzTpgbgfo_let_hXg7QqYbI3vkwnW5UeO4iKB7xbu45GDcuBfDpLO1kGw0Lni6aS76E5I-QegO8Gq</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Wu, Zhong-Biao</creator><creator>Ni, Wei-Min</creator><creator>Guan, Bao-Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>7U7</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process</title><author>Wu, Zhong-Biao ; Ni, Wei-Min ; Guan, Bao-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-54a2077fc5b8da3e8bc44d94714b02e6a1a4b522fd0e75e8861002e2b54bb25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chelating Agents</topic><topic>Chemical engineering</topic><topic>Chemical Precipitation</topic><topic>Chitosan</topic><topic>Coal</topic><topic>Dual-alkali FGD</topic><topic>Exact sciences and technology</topic><topic>Flocculation</topic><topic>General processes of purification and dust removal</topic><topic>Incineration</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Manganese</topic><topic>Manganese - isolation &amp; purification</topic><topic>Metals, Heavy - isolation &amp; purification</topic><topic>Pollution</topic><topic>Power Plants</topic><topic>Prevention and purification methods</topic><topic>Settling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhong-Biao</creatorcontrib><creatorcontrib>Ni, Wei-Min</creatorcontrib><creatorcontrib>Guan, Bao-Hong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhong-Biao</au><au>Ni, Wei-Min</au><au>Guan, Bao-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>152</volume><issue>2</issue><spage>757</spage><epage>764</epage><pages>757-764</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Heavy metals and suspended solid (SS) needed to be removed from the recirculation of dual-alkali flue gas desulfurization (FGD) system. The feasibility of coprecipitation of heavy metal and SS by water-soluble chitosan was studied in a lab scale experiment. The association between chitosan and metal ions was verified through DSC and FT-IR. The pH investigation revealed that at the pH ranged from 5 to 9, there were three stages for different actions: adsorption of chitosan for Mn(II), precipitation of manganese hydroxide and coprecipitation of manganese hydroxide and chitosan–Mn(II) complex. The ion selectivity experiments showed that the occurrence of Ca(II) in the solution had little influence on the adsorption of chitosan for Mn(II). The decrease rate of adsorption capacity was about 0.0023 mmol g −1 per 1 mg L −1 Ca(II). When adsorption and flocculation of chitosan occurred at the same time and at the sufficient addition of chitosan, chitosan not only made solids flocculate but also enhanced sorption capacity of chitosan. Application of chitosan for coprecipitation of Mn(II) and SS could remove Mn(II) efficiently and improve the settling characteristics of SS from dual-alkali FGD regenerating process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17764834</pmid><doi>10.1016/j.jhazmat.2007.07.042</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2008-04, Vol.152 (2), p.757-764
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_70377282
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
Applied sciences
Atmospheric pollution
Chelating Agents
Chemical engineering
Chemical Precipitation
Chitosan
Coal
Dual-alkali FGD
Exact sciences and technology
Flocculation
General processes of purification and dust removal
Incineration
Liquid-liquid and fluid-solid mechanical separations
Manganese
Manganese - isolation & purification
Metals, Heavy - isolation & purification
Pollution
Power Plants
Prevention and purification methods
Settling
title Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20chitosan%20as%20flocculant%20for%20coprecipitation%20of%20Mn(II)%20and%20suspended%20solids%20from%20dual-alkali%20FGD%20regenerating%20process&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Wu,%20Zhong-Biao&rft.date=2008-04-01&rft.volume=152&rft.issue=2&rft.spage=757&rft.epage=764&rft.pages=757-764&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2007.07.042&rft_dat=%3Cproquest_cross%3E19683157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19683157&rft_id=info:pmid/17764834&rft_els_id=S0304389407010722&rfr_iscdi=true