A new implicit solvent model for protein-ligand docking

A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2007-05, Vol.67 (3), p.606-616
Hauptverfasser: Morreale, Antonio, Gil-Redondo, Rubén, Ortiz, Ángel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue 3
container_start_page 606
container_title Proteins, structure, function, and bioinformatics
container_volume 67
creator Morreale, Antonio
Gil-Redondo, Rubén
Ortiz, Ángel R.
description A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.21269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70368636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70368636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqWw8ANQJgakFDvPseOxVFBAFQVUBJtlbKcyzUeJU0r_PSkpsDG95dyj-y5CxwT3CcbR-aIq635EIiZ2UJdgwUNMgO6iLk4SHkKcxB104P0bxpgJYPuoQzgAFsC7iA-Cwq4Cly8yp10d-DL7sEUd5KWxWZCWVbCxW1eEmZupwgSm1HNXzA7RXqoyb4-2t4eeri6nw-twPBndDAfjUFMgImSCQhylBniKKWjBU4gZgFbCYkqJxSY2SrGY24QmYHUU8TTCXCtujFCKQg-dtt6mxvvS-lrmzmubZaqw5dJLjoElDFgDnrWgrkrvK5vKReVyVa0lwXIzk9w8Ir9nauCTrXX5mlvzh253aQDSAiuX2fU_Knn_OJn-SMM243xtP38zqppLxoHH8vluJOnFy_T2IeIygS-joYDq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70368636</pqid></control><display><type>article</type><title>A new implicit solvent model for protein-ligand docking</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Morreale, Antonio ; Gil-Redondo, Rubén ; Ortiz, Ángel R.</creator><creatorcontrib>Morreale, Antonio ; Gil-Redondo, Rubén ; Ortiz, Ángel R.</creatorcontrib><description>A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.21269</identifier><identifier>PMID: 17330937</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>binding free energies ; Computational Biology ; Computer Simulation ; docking ; electrostatics ; force fields ; Ligands ; Models, Theoretical ; Protein Binding ; Proteins - chemistry ; solvation ; Solvents - chemistry ; Static Electricity ; Thermodynamics ; virtual screening</subject><ispartof>Proteins, structure, function, and bioinformatics, 2007-05, Vol.67 (3), p.606-616</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</citedby><cites>FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.21269$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.21269$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17330937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morreale, Antonio</creatorcontrib><creatorcontrib>Gil-Redondo, Rubén</creatorcontrib><creatorcontrib>Ortiz, Ángel R.</creatorcontrib><title>A new implicit solvent model for protein-ligand docking</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.</description><subject>binding free energies</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>docking</subject><subject>electrostatics</subject><subject>force fields</subject><subject>Ligands</subject><subject>Models, Theoretical</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><subject>solvation</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>virtual screening</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAURS0EoqWw8ANQJgakFDvPseOxVFBAFQVUBJtlbKcyzUeJU0r_PSkpsDG95dyj-y5CxwT3CcbR-aIq635EIiZ2UJdgwUNMgO6iLk4SHkKcxB104P0bxpgJYPuoQzgAFsC7iA-Cwq4Cly8yp10d-DL7sEUd5KWxWZCWVbCxW1eEmZupwgSm1HNXzA7RXqoyb4-2t4eeri6nw-twPBndDAfjUFMgImSCQhylBniKKWjBU4gZgFbCYkqJxSY2SrGY24QmYHUU8TTCXCtujFCKQg-dtt6mxvvS-lrmzmubZaqw5dJLjoElDFgDnrWgrkrvK5vKReVyVa0lwXIzk9w8Ir9nauCTrXX5mlvzh253aQDSAiuX2fU_Knn_OJn-SMM243xtP38zqppLxoHH8vluJOnFy_T2IeIygS-joYDq</recordid><startdate>20070515</startdate><enddate>20070515</enddate><creator>Morreale, Antonio</creator><creator>Gil-Redondo, Rubén</creator><creator>Ortiz, Ángel R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070515</creationdate><title>A new implicit solvent model for protein-ligand docking</title><author>Morreale, Antonio ; Gil-Redondo, Rubén ; Ortiz, Ángel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>binding free energies</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>docking</topic><topic>electrostatics</topic><topic>force fields</topic><topic>Ligands</topic><topic>Models, Theoretical</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><topic>solvation</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morreale, Antonio</creatorcontrib><creatorcontrib>Gil-Redondo, Rubén</creatorcontrib><creatorcontrib>Ortiz, Ángel R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morreale, Antonio</au><au>Gil-Redondo, Rubén</au><au>Ortiz, Ángel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new implicit solvent model for protein-ligand docking</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2007-05-15</date><risdate>2007</risdate><volume>67</volume><issue>3</issue><spage>606</spage><epage>616</epage><pages>606-616</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17330937</pmid><doi>10.1002/prot.21269</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2007-05, Vol.67 (3), p.606-616
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_70368636
source MEDLINE; Wiley Online Library All Journals
subjects binding free energies
Computational Biology
Computer Simulation
docking
electrostatics
force fields
Ligands
Models, Theoretical
Protein Binding
Proteins - chemistry
solvation
Solvents - chemistry
Static Electricity
Thermodynamics
virtual screening
title A new implicit solvent model for protein-ligand docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20implicit%20solvent%20model%20for%20protein-ligand%20docking&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Morreale,%20Antonio&rft.date=2007-05-15&rft.volume=67&rft.issue=3&rft.spage=606&rft.epage=616&rft.pages=606-616&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.21269&rft_dat=%3Cproquest_cross%3E70368636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70368636&rft_id=info:pmid/17330937&rfr_iscdi=true