A new implicit solvent model for protein-ligand docking
A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on tw...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2007-05, Vol.67 (3), p.606-616 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 616 |
---|---|
container_issue | 3 |
container_start_page | 606 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 67 |
creator | Morreale, Antonio Gil-Redondo, Rubén Ortiz, Ángel R. |
description | A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/prot.21269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70368636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70368636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqWw8ANQJgakFDvPseOxVFBAFQVUBJtlbKcyzUeJU0r_PSkpsDG95dyj-y5CxwT3CcbR-aIq635EIiZ2UJdgwUNMgO6iLk4SHkKcxB104P0bxpgJYPuoQzgAFsC7iA-Cwq4Cly8yp10d-DL7sEUd5KWxWZCWVbCxW1eEmZupwgSm1HNXzA7RXqoyb4-2t4eeri6nw-twPBndDAfjUFMgImSCQhylBniKKWjBU4gZgFbCYkqJxSY2SrGY24QmYHUU8TTCXCtujFCKQg-dtt6mxvvS-lrmzmubZaqw5dJLjoElDFgDnrWgrkrvK5vKReVyVa0lwXIzk9w8Ir9nauCTrXX5mlvzh253aQDSAiuX2fU_Knn_OJn-SMM243xtP38zqppLxoHH8vluJOnFy_T2IeIygS-joYDq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70368636</pqid></control><display><type>article</type><title>A new implicit solvent model for protein-ligand docking</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Morreale, Antonio ; Gil-Redondo, Rubén ; Ortiz, Ángel R.</creator><creatorcontrib>Morreale, Antonio ; Gil-Redondo, Rubén ; Ortiz, Ángel R.</creatorcontrib><description>A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.21269</identifier><identifier>PMID: 17330937</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>binding free energies ; Computational Biology ; Computer Simulation ; docking ; electrostatics ; force fields ; Ligands ; Models, Theoretical ; Protein Binding ; Proteins - chemistry ; solvation ; Solvents - chemistry ; Static Electricity ; Thermodynamics ; virtual screening</subject><ispartof>Proteins, structure, function, and bioinformatics, 2007-05, Vol.67 (3), p.606-616</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</citedby><cites>FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.21269$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.21269$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17330937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morreale, Antonio</creatorcontrib><creatorcontrib>Gil-Redondo, Rubén</creatorcontrib><creatorcontrib>Ortiz, Ángel R.</creatorcontrib><title>A new implicit solvent model for protein-ligand docking</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.</description><subject>binding free energies</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>docking</subject><subject>electrostatics</subject><subject>force fields</subject><subject>Ligands</subject><subject>Models, Theoretical</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><subject>solvation</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>virtual screening</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAURS0EoqWw8ANQJgakFDvPseOxVFBAFQVUBJtlbKcyzUeJU0r_PSkpsDG95dyj-y5CxwT3CcbR-aIq635EIiZ2UJdgwUNMgO6iLk4SHkKcxB104P0bxpgJYPuoQzgAFsC7iA-Cwq4Cly8yp10d-DL7sEUd5KWxWZCWVbCxW1eEmZupwgSm1HNXzA7RXqoyb4-2t4eeri6nw-twPBndDAfjUFMgImSCQhylBniKKWjBU4gZgFbCYkqJxSY2SrGY24QmYHUU8TTCXCtujFCKQg-dtt6mxvvS-lrmzmubZaqw5dJLjoElDFgDnrWgrkrvK5vKReVyVa0lwXIzk9w8Ir9nauCTrXX5mlvzh253aQDSAiuX2fU_Knn_OJn-SMM243xtP38zqppLxoHH8vluJOnFy_T2IeIygS-joYDq</recordid><startdate>20070515</startdate><enddate>20070515</enddate><creator>Morreale, Antonio</creator><creator>Gil-Redondo, Rubén</creator><creator>Ortiz, Ángel R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070515</creationdate><title>A new implicit solvent model for protein-ligand docking</title><author>Morreale, Antonio ; Gil-Redondo, Rubén ; Ortiz, Ángel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4319-694352fd37f043c97f35633ca9e0441e0d5daa657e8483ec227f207ca7dd9aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>binding free energies</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>docking</topic><topic>electrostatics</topic><topic>force fields</topic><topic>Ligands</topic><topic>Models, Theoretical</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><topic>solvation</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morreale, Antonio</creatorcontrib><creatorcontrib>Gil-Redondo, Rubén</creatorcontrib><creatorcontrib>Ortiz, Ángel R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morreale, Antonio</au><au>Gil-Redondo, Rubén</au><au>Ortiz, Ángel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new implicit solvent model for protein-ligand docking</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2007-05-15</date><risdate>2007</risdate><volume>67</volume><issue>3</issue><spage>606</spage><epage>616</epage><pages>606-616</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A new implicit solvent model for computing the electrostatics binding free energy in protein–ligand docking is proposed. The new method is based on an adaptation of the screening coulombic potentials proposed originally by Hassan et al. (J Phys Chem B 2000;104:6490–6498). In essence, it relies on two basic assumptions; (i) solvent screening can be accounted for by means of radially dependent sigmoidal dielectric functions and; (ii) the effective atom Born radii can be expressed only as a function of the exposed atom surface. Parameters of the model other than radii and charges are generic. These were optimized for a dataset of 826 protein–ligand complexes, comprising both X‐ray complexes for 23 receptors as well as decoys generated by docking computations. We show that the new model provides satisfactory results when benchmarked against reference values based on the numerical solution of the Poisson equation, with a root mean square error of 4.2 kcal/mol over a range of ∼40 kcal/mol in electrostatics binding free energies, a cross‐validated r2 of 0.81, a slope of 0.97, and an intercept of 1.06 kcal/mol. We show that the model is appropriate for ligands of different sizes, polarities, overall charge, and chemical composition. Furthermore, not only the total value of the electrostatic contribution to the binding free energy, but also its components (coulombic term, receptor desolvation, and ligand desolvation) are reasonably well reproduced. Computation times of ∼0.030 s per pose are obtained on a single processor desktop workstation. Proteins 2007. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17330937</pmid><doi>10.1002/prot.21269</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2007-05, Vol.67 (3), p.606-616 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_70368636 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | binding free energies Computational Biology Computer Simulation docking electrostatics force fields Ligands Models, Theoretical Protein Binding Proteins - chemistry solvation Solvents - chemistry Static Electricity Thermodynamics virtual screening |
title | A new implicit solvent model for protein-ligand docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20implicit%20solvent%20model%20for%20protein-ligand%20docking&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Morreale,%20Antonio&rft.date=2007-05-15&rft.volume=67&rft.issue=3&rft.spage=606&rft.epage=616&rft.pages=606-616&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.21269&rft_dat=%3Cproquest_cross%3E70368636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70368636&rft_id=info:pmid/17330937&rfr_iscdi=true |