Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity

Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical senses 2007-03, Vol.32 (3), p.215-223
Hauptverfasser: Yang, Geoffrey C., Scherer, Peter W., Mozell, Maxwell M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 3
container_start_page 215
container_title Chemical senses
container_volume 32
creator Yang, Geoffrey C.
Scherer, Peter W.
Mozell, Maxwell M.
description Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model of the right nasal cavity of the Sprague-Dawley rat based on horizontal (anterior–posterior) nasal cast cross sections. By numerically solving the fluid mechanical momentum and continuity equations using the finite element method, we studied the flow distribution and the complete velocity field for both inspiration and expiration throughout the nasal cavity under physiological flow rates of resting breathing and sniffing. Detailed velocity profiles, volumetric flow distributions, and streamline patterns for quasi-steady airflow are presented. S-shaped streamlines passing through the olfactory region are found to be less prevalent during expiratory than inspiratory flow leading to trapping and an increase in odorant molecule retention in the olfactory region during sniffing. The rat nasal velocity calculations will be used to study the distribution of odorant uptake onto the rat olfactory mucosa and compare it with the known anatomic location of some types of rat olfactory receptors.
doi_str_mv 10.1093/chemse/bjl047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70366717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/chemse/bjl047</oup_id><sourcerecordid>70366717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-c05cd17b57a5378b97e8b8d68b8278811238e991a7478c04024ff3a62c2d4bd33</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBlALgehQWLJFFhKITagdx68lGlpaqYA0w6OajXXjeKYZPEmwHWj-PYFErcSmG19ZOroPfQg9p-QtJZqd2Gt3iO6k3HtSyAdoQQtRZIxz9hAtCJM6U6K4OkJPYtwTQguWq8foiMo8J5zqBdp9bCvn62aHL5rY1QFSGwYMTYVPb26_6-SgGrJ1guTwN-dbW6cBn9XOVxHXDU7XDq-7ALveZe_ht3cDXkHCnyCCx0v4Neqn6NEWfHTP5nqMvp6dflmeZ5efP1ws311mtlA6ZZZwW1FZcgmcSVVq6VSpKjE-uVSK0pwppzUFWUhlSUHyYrtlIHKbV0VZMXaMXk99u9D-7F1M5lBH67yHxrV9NJIwISSV90KqBddc8BG-_A_u2z404xGj0bnQXNERZROyoY0xuK3pQn2AMBhKzN-czJSTmXIa_Yu5aV8eXHWn52BG8GoGEC34bYDG1vHOKaGp_OfeTK7tu3tnzjvWMbmbWwzhhxGSSW7Orzbmu1xtyIqvzIb9AfjbuV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199269581</pqid></control><display><type>article</type><title>Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Geoffrey C. ; Scherer, Peter W. ; Mozell, Maxwell M.</creator><creatorcontrib>Yang, Geoffrey C. ; Scherer, Peter W. ; Mozell, Maxwell M.</creatorcontrib><description>Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model of the right nasal cavity of the Sprague-Dawley rat based on horizontal (anterior–posterior) nasal cast cross sections. By numerically solving the fluid mechanical momentum and continuity equations using the finite element method, we studied the flow distribution and the complete velocity field for both inspiration and expiration throughout the nasal cavity under physiological flow rates of resting breathing and sniffing. Detailed velocity profiles, volumetric flow distributions, and streamline patterns for quasi-steady airflow are presented. S-shaped streamlines passing through the olfactory region are found to be less prevalent during expiratory than inspiratory flow leading to trapping and an increase in odorant molecule retention in the olfactory region during sniffing. The rat nasal velocity calculations will be used to study the distribution of odorant uptake onto the rat olfactory mucosa and compare it with the known anatomic location of some types of rat olfactory receptors.</description><identifier>ISSN: 0379-864X</identifier><identifier>EISSN: 1464-3553</identifier><identifier>DOI: 10.1093/chemse/bjl047</identifier><identifier>PMID: 17220519</identifier><identifier>CODEN: CHSED8</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Biological and medical sciences ; Finite Element Analysis ; Fundamental and applied biological sciences. Psychology ; Male ; Models, Biological ; nasal airflow ; Nasal Cavity - physiology ; Olfaction. Taste ; olfactory mucosa ; Olfactory Mucosa - physiology ; Perception ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Rats ; Rats, Sprague-Dawley ; Respiratory Function Tests - methods ; Smell ; sniffing ; streamline</subject><ispartof>Chemical senses, 2007-03, Vol.32 (3), p.215-223</ispartof><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2007</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Mar 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-c05cd17b57a5378b97e8b8d68b8278811238e991a7478c04024ff3a62c2d4bd33</citedby><cites>FETCH-LOGICAL-c489t-c05cd17b57a5378b97e8b8d68b8278811238e991a7478c04024ff3a62c2d4bd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18691719$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17220519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Geoffrey C.</creatorcontrib><creatorcontrib>Scherer, Peter W.</creatorcontrib><creatorcontrib>Mozell, Maxwell M.</creatorcontrib><title>Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity</title><title>Chemical senses</title><addtitle>Chem Senses</addtitle><description>Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model of the right nasal cavity of the Sprague-Dawley rat based on horizontal (anterior–posterior) nasal cast cross sections. By numerically solving the fluid mechanical momentum and continuity equations using the finite element method, we studied the flow distribution and the complete velocity field for both inspiration and expiration throughout the nasal cavity under physiological flow rates of resting breathing and sniffing. Detailed velocity profiles, volumetric flow distributions, and streamline patterns for quasi-steady airflow are presented. S-shaped streamlines passing through the olfactory region are found to be less prevalent during expiratory than inspiratory flow leading to trapping and an increase in odorant molecule retention in the olfactory region during sniffing. The rat nasal velocity calculations will be used to study the distribution of odorant uptake onto the rat olfactory mucosa and compare it with the known anatomic location of some types of rat olfactory receptors.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Finite Element Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Male</subject><subject>Models, Biological</subject><subject>nasal airflow</subject><subject>Nasal Cavity - physiology</subject><subject>Olfaction. Taste</subject><subject>olfactory mucosa</subject><subject>Olfactory Mucosa - physiology</subject><subject>Perception</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Respiratory Function Tests - methods</subject><subject>Smell</subject><subject>sniffing</subject><subject>streamline</subject><issn>0379-864X</issn><issn>1464-3553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAUBlALgehQWLJFFhKITagdx68lGlpaqYA0w6OajXXjeKYZPEmwHWj-PYFErcSmG19ZOroPfQg9p-QtJZqd2Gt3iO6k3HtSyAdoQQtRZIxz9hAtCJM6U6K4OkJPYtwTQguWq8foiMo8J5zqBdp9bCvn62aHL5rY1QFSGwYMTYVPb26_6-SgGrJ1guTwN-dbW6cBn9XOVxHXDU7XDq-7ALveZe_ht3cDXkHCnyCCx0v4Neqn6NEWfHTP5nqMvp6dflmeZ5efP1ws311mtlA6ZZZwW1FZcgmcSVVq6VSpKjE-uVSK0pwppzUFWUhlSUHyYrtlIHKbV0VZMXaMXk99u9D-7F1M5lBH67yHxrV9NJIwISSV90KqBddc8BG-_A_u2z404xGj0bnQXNERZROyoY0xuK3pQn2AMBhKzN-czJSTmXIa_Yu5aV8eXHWn52BG8GoGEC34bYDG1vHOKaGp_OfeTK7tu3tnzjvWMbmbWwzhhxGSSW7Orzbmu1xtyIqvzIb9AfjbuV0</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Yang, Geoffrey C.</creator><creator>Scherer, Peter W.</creator><creator>Mozell, Maxwell M.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity</title><author>Yang, Geoffrey C. ; Scherer, Peter W. ; Mozell, Maxwell M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-c05cd17b57a5378b97e8b8d68b8278811238e991a7478c04024ff3a62c2d4bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Finite Element Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Male</topic><topic>Models, Biological</topic><topic>nasal airflow</topic><topic>Nasal Cavity - physiology</topic><topic>Olfaction. Taste</topic><topic>olfactory mucosa</topic><topic>Olfactory Mucosa - physiology</topic><topic>Perception</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Respiratory Function Tests - methods</topic><topic>Smell</topic><topic>sniffing</topic><topic>streamline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Geoffrey C.</creatorcontrib><creatorcontrib>Scherer, Peter W.</creatorcontrib><creatorcontrib>Mozell, Maxwell M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical senses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Geoffrey C.</au><au>Scherer, Peter W.</au><au>Mozell, Maxwell M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity</atitle><jtitle>Chemical senses</jtitle><addtitle>Chem Senses</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>32</volume><issue>3</issue><spage>215</spage><epage>223</epage><pages>215-223</pages><issn>0379-864X</issn><eissn>1464-3553</eissn><coden>CHSED8</coden><abstract>Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model of the right nasal cavity of the Sprague-Dawley rat based on horizontal (anterior–posterior) nasal cast cross sections. By numerically solving the fluid mechanical momentum and continuity equations using the finite element method, we studied the flow distribution and the complete velocity field for both inspiration and expiration throughout the nasal cavity under physiological flow rates of resting breathing and sniffing. Detailed velocity profiles, volumetric flow distributions, and streamline patterns for quasi-steady airflow are presented. S-shaped streamlines passing through the olfactory region are found to be less prevalent during expiratory than inspiratory flow leading to trapping and an increase in odorant molecule retention in the olfactory region during sniffing. The rat nasal velocity calculations will be used to study the distribution of odorant uptake onto the rat olfactory mucosa and compare it with the known anatomic location of some types of rat olfactory receptors.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>17220519</pmid><doi>10.1093/chemse/bjl047</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0379-864X
ispartof Chemical senses, 2007-03, Vol.32 (3), p.215-223
issn 0379-864X
1464-3553
language eng
recordid cdi_proquest_miscellaneous_70366717
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Free Full-Text Journals in Chemistry
subjects Animals
Biological and medical sciences
Finite Element Analysis
Fundamental and applied biological sciences. Psychology
Male
Models, Biological
nasal airflow
Nasal Cavity - physiology
Olfaction. Taste
olfactory mucosa
Olfactory Mucosa - physiology
Perception
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Rats
Rats, Sprague-Dawley
Respiratory Function Tests - methods
Smell
sniffing
streamline
title Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Inspiratory%20and%20Expiratory%20Steady-State%20Velocity%20Fields%20in%20the%20Sprague-Dawley%20Rat%20Nasal%20Cavity&rft.jtitle=Chemical%20senses&rft.au=Yang,%20Geoffrey%20C.&rft.date=2007-03-01&rft.volume=32&rft.issue=3&rft.spage=215&rft.epage=223&rft.pages=215-223&rft.issn=0379-864X&rft.eissn=1464-3553&rft.coden=CHSED8&rft_id=info:doi/10.1093/chemse/bjl047&rft_dat=%3Cproquest_cross%3E70366717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199269581&rft_id=info:pmid/17220519&rft_oup_id=10.1093/chemse/bjl047&rfr_iscdi=true