microplate-based evaluation of complex denaturation pathways: Structural stability of Escherichia coli transketolase

We have previously developed a rapid microplate-based approach for measuring the denaturation curves by intrinsic tryptophan fluorescence for simple monomeric and two-state unfolding proteins. Here we demonstrate that it can accurately resolve the multiple conformational transitions that occur durin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2008-04, Vol.99 (6), p.1303-1310
Hauptverfasser: Aucamp, Jean P, Martinez-Torres, Ruben J, Hibbert, Edward G, Dalby, Paul A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 6
container_start_page 1303
container_title Biotechnology and bioengineering
container_volume 99
creator Aucamp, Jean P
Martinez-Torres, Ruben J
Hibbert, Edward G
Dalby, Paul A
description We have previously developed a rapid microplate-based approach for measuring the denaturation curves by intrinsic tryptophan fluorescence for simple monomeric and two-state unfolding proteins. Here we demonstrate that it can accurately resolve the multiple conformational transitions that occur during the denaturation of a complex multimeric and cofactor associated protein. We have also analyzed the effect of two active-site mutations, D381A and Y440A upon the denaturation pathway of transketolase using intrinsic fluorescence measurements, and we compare the results from classical and microplate-based instrumentation. This work shows that the rapid assay is able to identify changes in the denaturation pathway, due to mutations or removal of cofactors, which affect the stability of the native and intermediate states. This would be of significant benefit for the directed evolution of protein stability, optimizing enzyme stability under biocatalytic process conditions, and also for engineering specific transitions in protein unfolding pathways. Biotechnol. Bioeng. 2008;99: 1303-1310.
doi_str_mv 10.1002/bit.21705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70363430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19650865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4745-9fb8407adf460be031444d9b8910a5d3908a4ad2fed8f6f3115169a26ac64f363</originalsourceid><addsrcrecordid>eNqF0V9r1TAYBvAiijubXvgFtHgheNHtzZ8mjXc65nEwVNiG4k1426aebGl7TNJt59ubY48KguwqJPzeJ7w8WfaMwCEBoEe1jYeUSCgfZAsCShZAFTzMFgAgClYqupfth3CVrrIS4nG2R6QSijC1yGJvGz-uHUZT1BhMm5sbdBNGOw752OXN2K-ductbM2Cc_Py-xri6xU14k59HPzXbd5eHiLV1Nm62YyehWRlvm5XFFOFsHj0O4drE0aVPnmSPOnTBPN2dB9nl-5OL4w_F2afl6fHbs6LhkpeF6uqKg8S24wJqA4xwzltVV4oAli1TUCHHlnamrTrRMUJKIhRSgY3gHRPsIHs15679-GMyIerehsY4h4MZp6AlJMQZ3AsZ5VQofj8kSpRQiTLBl__Aq3HyQ9pWU8KkoKmthF7PKFUQgjedXnvbo99oAnrbrE7N6l_NJvt8FzjVvWn_yl2VCRzN4NY6s_l_kn53evE7spgnbIjm7s8E-mstJJOl_vJxqcVX9ll8U0tdJf9i9h2OGr97G_TlOQXCIK1cVUDZTyXDxms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213762705</pqid></control><display><type>article</type><title>microplate-based evaluation of complex denaturation pathways: Structural stability of Escherichia coli transketolase</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Aucamp, Jean P ; Martinez-Torres, Ruben J ; Hibbert, Edward G ; Dalby, Paul A</creator><creatorcontrib>Aucamp, Jean P ; Martinez-Torres, Ruben J ; Hibbert, Edward G ; Dalby, Paul A</creatorcontrib><description>We have previously developed a rapid microplate-based approach for measuring the denaturation curves by intrinsic tryptophan fluorescence for simple monomeric and two-state unfolding proteins. Here we demonstrate that it can accurately resolve the multiple conformational transitions that occur during the denaturation of a complex multimeric and cofactor associated protein. We have also analyzed the effect of two active-site mutations, D381A and Y440A upon the denaturation pathway of transketolase using intrinsic fluorescence measurements, and we compare the results from classical and microplate-based instrumentation. This work shows that the rapid assay is able to identify changes in the denaturation pathway, due to mutations or removal of cofactors, which affect the stability of the native and intermediate states. This would be of significant benefit for the directed evolution of protein stability, optimizing enzyme stability under biocatalytic process conditions, and also for engineering specific transitions in protein unfolding pathways. Biotechnol. Bioeng. 2008;99: 1303-1310.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21705</identifier><identifier>PMID: 17969139</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>biocatalysis ; Biochemistry ; Catalysis ; denaturation ; directed evolution ; E coli ; Effects ; Enzyme Stability ; Escherichia coli ; Escherichia coli - enzymology ; high-throughput screening ; Mutation ; Protein Array Analysis - methods ; Protein Denaturation ; Protein folding ; Signal Transduction - physiology ; thermostability ; Transitions ; transketolase ; Transketolase - chemistry ; Transketolase - metabolism ; tryptophan fluorescence</subject><ispartof>Biotechnology and bioengineering, 2008-04, Vol.99 (6), p.1303-1310</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>Copyright 2007 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Apr 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4745-9fb8407adf460be031444d9b8910a5d3908a4ad2fed8f6f3115169a26ac64f363</citedby><cites>FETCH-LOGICAL-c4745-9fb8407adf460be031444d9b8910a5d3908a4ad2fed8f6f3115169a26ac64f363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17969139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aucamp, Jean P</creatorcontrib><creatorcontrib>Martinez-Torres, Ruben J</creatorcontrib><creatorcontrib>Hibbert, Edward G</creatorcontrib><creatorcontrib>Dalby, Paul A</creatorcontrib><title>microplate-based evaluation of complex denaturation pathways: Structural stability of Escherichia coli transketolase</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>We have previously developed a rapid microplate-based approach for measuring the denaturation curves by intrinsic tryptophan fluorescence for simple monomeric and two-state unfolding proteins. Here we demonstrate that it can accurately resolve the multiple conformational transitions that occur during the denaturation of a complex multimeric and cofactor associated protein. We have also analyzed the effect of two active-site mutations, D381A and Y440A upon the denaturation pathway of transketolase using intrinsic fluorescence measurements, and we compare the results from classical and microplate-based instrumentation. This work shows that the rapid assay is able to identify changes in the denaturation pathway, due to mutations or removal of cofactors, which affect the stability of the native and intermediate states. This would be of significant benefit for the directed evolution of protein stability, optimizing enzyme stability under biocatalytic process conditions, and also for engineering specific transitions in protein unfolding pathways. Biotechnol. Bioeng. 2008;99: 1303-1310.</description><subject>biocatalysis</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>denaturation</subject><subject>directed evolution</subject><subject>E coli</subject><subject>Effects</subject><subject>Enzyme Stability</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>high-throughput screening</subject><subject>Mutation</subject><subject>Protein Array Analysis - methods</subject><subject>Protein Denaturation</subject><subject>Protein folding</subject><subject>Signal Transduction - physiology</subject><subject>thermostability</subject><subject>Transitions</subject><subject>transketolase</subject><subject>Transketolase - chemistry</subject><subject>Transketolase - metabolism</subject><subject>tryptophan fluorescence</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0V9r1TAYBvAiijubXvgFtHgheNHtzZ8mjXc65nEwVNiG4k1426aebGl7TNJt59ubY48KguwqJPzeJ7w8WfaMwCEBoEe1jYeUSCgfZAsCShZAFTzMFgAgClYqupfth3CVrrIS4nG2R6QSijC1yGJvGz-uHUZT1BhMm5sbdBNGOw752OXN2K-ductbM2Cc_Py-xri6xU14k59HPzXbd5eHiLV1Nm62YyehWRlvm5XFFOFsHj0O4drE0aVPnmSPOnTBPN2dB9nl-5OL4w_F2afl6fHbs6LhkpeF6uqKg8S24wJqA4xwzltVV4oAli1TUCHHlnamrTrRMUJKIhRSgY3gHRPsIHs15679-GMyIerehsY4h4MZp6AlJMQZ3AsZ5VQofj8kSpRQiTLBl__Aq3HyQ9pWU8KkoKmthF7PKFUQgjedXnvbo99oAnrbrE7N6l_NJvt8FzjVvWn_yl2VCRzN4NY6s_l_kn53evE7spgnbIjm7s8E-mstJJOl_vJxqcVX9ll8U0tdJf9i9h2OGr97G_TlOQXCIK1cVUDZTyXDxms</recordid><startdate>20080415</startdate><enddate>20080415</enddate><creator>Aucamp, Jean P</creator><creator>Martinez-Torres, Ruben J</creator><creator>Hibbert, Edward G</creator><creator>Dalby, Paul A</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope><scope>7X8</scope></search><sort><creationdate>20080415</creationdate><title>microplate-based evaluation of complex denaturation pathways: Structural stability of Escherichia coli transketolase</title><author>Aucamp, Jean P ; Martinez-Torres, Ruben J ; Hibbert, Edward G ; Dalby, Paul A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4745-9fb8407adf460be031444d9b8910a5d3908a4ad2fed8f6f3115169a26ac64f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>biocatalysis</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>denaturation</topic><topic>directed evolution</topic><topic>E coli</topic><topic>Effects</topic><topic>Enzyme Stability</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>high-throughput screening</topic><topic>Mutation</topic><topic>Protein Array Analysis - methods</topic><topic>Protein Denaturation</topic><topic>Protein folding</topic><topic>Signal Transduction - physiology</topic><topic>thermostability</topic><topic>Transitions</topic><topic>transketolase</topic><topic>Transketolase - chemistry</topic><topic>Transketolase - metabolism</topic><topic>tryptophan fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aucamp, Jean P</creatorcontrib><creatorcontrib>Martinez-Torres, Ruben J</creatorcontrib><creatorcontrib>Hibbert, Edward G</creatorcontrib><creatorcontrib>Dalby, Paul A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aucamp, Jean P</au><au>Martinez-Torres, Ruben J</au><au>Hibbert, Edward G</au><au>Dalby, Paul A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>microplate-based evaluation of complex denaturation pathways: Structural stability of Escherichia coli transketolase</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2008-04-15</date><risdate>2008</risdate><volume>99</volume><issue>6</issue><spage>1303</spage><epage>1310</epage><pages>1303-1310</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>We have previously developed a rapid microplate-based approach for measuring the denaturation curves by intrinsic tryptophan fluorescence for simple monomeric and two-state unfolding proteins. Here we demonstrate that it can accurately resolve the multiple conformational transitions that occur during the denaturation of a complex multimeric and cofactor associated protein. We have also analyzed the effect of two active-site mutations, D381A and Y440A upon the denaturation pathway of transketolase using intrinsic fluorescence measurements, and we compare the results from classical and microplate-based instrumentation. This work shows that the rapid assay is able to identify changes in the denaturation pathway, due to mutations or removal of cofactors, which affect the stability of the native and intermediate states. This would be of significant benefit for the directed evolution of protein stability, optimizing enzyme stability under biocatalytic process conditions, and also for engineering specific transitions in protein unfolding pathways. Biotechnol. Bioeng. 2008;99: 1303-1310.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17969139</pmid><doi>10.1002/bit.21705</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2008-04, Vol.99 (6), p.1303-1310
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_70363430
source Wiley-Blackwell Journals; MEDLINE
subjects biocatalysis
Biochemistry
Catalysis
denaturation
directed evolution
E coli
Effects
Enzyme Stability
Escherichia coli
Escherichia coli - enzymology
high-throughput screening
Mutation
Protein Array Analysis - methods
Protein Denaturation
Protein folding
Signal Transduction - physiology
thermostability
Transitions
transketolase
Transketolase - chemistry
Transketolase - metabolism
tryptophan fluorescence
title microplate-based evaluation of complex denaturation pathways: Structural stability of Escherichia coli transketolase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=microplate-based%20evaluation%20of%20complex%20denaturation%20pathways:%20Structural%20stability%20of%20Escherichia%20coli%20transketolase&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Aucamp,%20Jean%20P&rft.date=2008-04-15&rft.volume=99&rft.issue=6&rft.spage=1303&rft.epage=1310&rft.pages=1303-1310&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21705&rft_dat=%3Cproquest_cross%3E19650865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213762705&rft_id=info:pmid/17969139&rfr_iscdi=true