The Drosophila Circadian Network Is a Seasonal Timer

Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2007-04, Vol.129 (1), p.207-219
Hauptverfasser: Stoleru, Dan, Nawathean, Pipat, Fernández, María de la Paz, Menet, Jerome S., Ceriani, M. Fernanda, Rosbash, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 207
container_title Cell
container_volume 129
creator Stoleru, Dan
Nawathean, Pipat
Fernández, María de la Paz
Menet, Jerome S.
Ceriani, M. Fernanda
Rosbash, Michael
description Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.
doi_str_mv 10.1016/j.cell.2007.02.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70359955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867407003145</els_id><sourcerecordid>70359955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-c822ed84d056391e55b41226967837a2e3330cb39991b8256142e8d08cbda88e3</originalsourceid><addsrcrecordid>eNqFkL1OwzAYRS0EoqXwAgwoE1vCZzuObYkFlV-pgoEyW47zVXXJT7FbEG9PolZig-ku517pHkLOKWQUaHG1yhzWdcYAZAYsA64OyJiClmlOJTskYwDNUlXIfEROYlwBgBJCHJMRlTlVUhdjks-XmNyGLnbrpa9tMvXB2crbNnnGzVcX3pOnmNjkFW3sWlsnc99gOCVHC1tHPNvnhLzd382nj-ns5eFpejNLXa7FJnWKMaxUXoEouKYoRJlTxgpdSMWlZcg5B1dyrTUtFRMFzRmqCpQrK6sU8gm53O2uQ_exxbgxjY_DZ9tit41GAhdaC_EvSHWhFVOsB9kOdP3lGHBh1sE3NnwbCmaQalZm6JlBqgFmeql96WK_vi0brH4re4s9cL0DsJfx6TGY6Dy2Disf0G1M1fm_9n8A_CWFXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19698282</pqid></control><display><type>article</type><title>The Drosophila Circadian Network Is a Seasonal Timer</title><source>MEDLINE</source><source>Open Access: Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Stoleru, Dan ; Nawathean, Pipat ; Fernández, María de la Paz ; Menet, Jerome S. ; Ceriani, M. Fernanda ; Rosbash, Michael</creator><creatorcontrib>Stoleru, Dan ; Nawathean, Pipat ; Fernández, María de la Paz ; Menet, Jerome S. ; Ceriani, M. Fernanda ; Rosbash, Michael</creatorcontrib><description>Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2007.02.038</identifier><identifier>PMID: 17418796</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Behavior, Animal ; Biological Clocks - physiology ; Brain - cytology ; Brain - physiology ; Circadian Rhythm - physiology ; Cryptochromes ; Drosophila ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Eye Proteins - metabolism ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Light ; MOLNEURO ; Motor Activity ; Neurons - physiology ; Photoperiod ; Receptors, G-Protein-Coupled - metabolism ; Seasons ; SYSNEURO</subject><ispartof>Cell, 2007-04, Vol.129 (1), p.207-219</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-c822ed84d056391e55b41226967837a2e3330cb39991b8256142e8d08cbda88e3</citedby><cites>FETCH-LOGICAL-c495t-c822ed84d056391e55b41226967837a2e3330cb39991b8256142e8d08cbda88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867407003145$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17418796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoleru, Dan</creatorcontrib><creatorcontrib>Nawathean, Pipat</creatorcontrib><creatorcontrib>Fernández, María de la Paz</creatorcontrib><creatorcontrib>Menet, Jerome S.</creatorcontrib><creatorcontrib>Ceriani, M. Fernanda</creatorcontrib><creatorcontrib>Rosbash, Michael</creatorcontrib><title>The Drosophila Circadian Network Is a Seasonal Timer</title><title>Cell</title><addtitle>Cell</addtitle><description>Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biological Clocks - physiology</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Cryptochromes</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eye Proteins - metabolism</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Light</subject><subject>MOLNEURO</subject><subject>Motor Activity</subject><subject>Neurons - physiology</subject><subject>Photoperiod</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Seasons</subject><subject>SYSNEURO</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1OwzAYRS0EoqXwAgwoE1vCZzuObYkFlV-pgoEyW47zVXXJT7FbEG9PolZig-ku517pHkLOKWQUaHG1yhzWdcYAZAYsA64OyJiClmlOJTskYwDNUlXIfEROYlwBgBJCHJMRlTlVUhdjks-XmNyGLnbrpa9tMvXB2crbNnnGzVcX3pOnmNjkFW3sWlsnc99gOCVHC1tHPNvnhLzd382nj-ns5eFpejNLXa7FJnWKMaxUXoEouKYoRJlTxgpdSMWlZcg5B1dyrTUtFRMFzRmqCpQrK6sU8gm53O2uQ_exxbgxjY_DZ9tit41GAhdaC_EvSHWhFVOsB9kOdP3lGHBh1sE3NnwbCmaQalZm6JlBqgFmeql96WK_vi0brH4re4s9cL0DsJfx6TGY6Dy2Disf0G1M1fm_9n8A_CWFXQ</recordid><startdate>20070406</startdate><enddate>20070406</enddate><creator>Stoleru, Dan</creator><creator>Nawathean, Pipat</creator><creator>Fernández, María de la Paz</creator><creator>Menet, Jerome S.</creator><creator>Ceriani, M. Fernanda</creator><creator>Rosbash, Michael</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20070406</creationdate><title>The Drosophila Circadian Network Is a Seasonal Timer</title><author>Stoleru, Dan ; Nawathean, Pipat ; Fernández, María de la Paz ; Menet, Jerome S. ; Ceriani, M. Fernanda ; Rosbash, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-c822ed84d056391e55b41226967837a2e3330cb39991b8256142e8d08cbda88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biological Clocks - physiology</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Cryptochromes</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eye Proteins - metabolism</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Light</topic><topic>MOLNEURO</topic><topic>Motor Activity</topic><topic>Neurons - physiology</topic><topic>Photoperiod</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Seasons</topic><topic>SYSNEURO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoleru, Dan</creatorcontrib><creatorcontrib>Nawathean, Pipat</creatorcontrib><creatorcontrib>Fernández, María de la Paz</creatorcontrib><creatorcontrib>Menet, Jerome S.</creatorcontrib><creatorcontrib>Ceriani, M. Fernanda</creatorcontrib><creatorcontrib>Rosbash, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoleru, Dan</au><au>Nawathean, Pipat</au><au>Fernández, María de la Paz</au><au>Menet, Jerome S.</au><au>Ceriani, M. Fernanda</au><au>Rosbash, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Drosophila Circadian Network Is a Seasonal Timer</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2007-04-06</date><risdate>2007</risdate><volume>129</volume><issue>1</issue><spage>207</spage><epage>219</epage><pages>207-219</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17418796</pmid><doi>10.1016/j.cell.2007.02.038</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2007-04, Vol.129 (1), p.207-219
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_70359955
source MEDLINE; Open Access: Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Animals
Behavior, Animal
Biological Clocks - physiology
Brain - cytology
Brain - physiology
Circadian Rhythm - physiology
Cryptochromes
Drosophila
Drosophila melanogaster - physiology
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Eye Proteins - metabolism
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
Light
MOLNEURO
Motor Activity
Neurons - physiology
Photoperiod
Receptors, G-Protein-Coupled - metabolism
Seasons
SYSNEURO
title The Drosophila Circadian Network Is a Seasonal Timer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Drosophila%20Circadian%20Network%20Is%20a%20Seasonal%20Timer&rft.jtitle=Cell&rft.au=Stoleru,%20Dan&rft.date=2007-04-06&rft.volume=129&rft.issue=1&rft.spage=207&rft.epage=219&rft.pages=207-219&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2007.02.038&rft_dat=%3Cproquest_cross%3E70359955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19698282&rft_id=info:pmid/17418796&rft_els_id=S0092867407003145&rfr_iscdi=true