State-of-the-Art of Seizure Prediction

Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical neurophysiology 2007-04, Vol.24 (2), p.147-153
Hauptverfasser: Lehnertz, Klaus, Mormann, Florian, Osterhage, Hannes, Müller, Andy, Prusseit, Jens, Chernihovskyi, Anton, Staniek, Matthäus, Krug, Dieter, Bialonski, Stephan, Elger, Christian E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 2
container_start_page 147
container_title Journal of clinical neurophysiology
container_volume 24
creator Lehnertz, Klaus
Mormann, Florian
Osterhage, Hannes
Müller, Andy
Prusseit, Jens
Chernihovskyi, Anton
Staniek, Matthäus
Krug, Dieter
Bialonski, Stephan
Elger, Christian E
description Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.
doi_str_mv 10.1097/WNP.0b013e3180336f16
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70359064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20490007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMotla_gUhPvaVONtlk91iK_6BooYrHsMlO6Oq2W5MsRT-9W1ooePE0M483b4YfIdcMxgxydfv-PB-DAcaRsww4l47JE9JnKVeUSeCnpA-KSwpJmvXIRQgfAExxnpyTHlOCiVxBn4wWsYhIG0fjEunEx2HjhgusflqPw7nHsrKxataX5MwVdcCrQx2Qt_u71-kjnb08PE0nM2p5xjLqQOboFFhloRSFKkplDWaqtIjWGMNM17CES7BgpeRJmRZgTO6gTDuN8QEZ7XM3vvlqMUS9qoLFui7W2LRBK-BpDlL8a0xA5AAdgAERe6P1TQgend74alX4b81A70DqDqT-C7Jbuznkt2aF5XHpQO6Yu23qiD581u0WvV5iUcel7k6DkDmjSfcDiG6iOynjv0Kaff0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20490007</pqid></control><display><type>article</type><title>State-of-the-Art of Seizure Prediction</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Lehnertz, Klaus ; Mormann, Florian ; Osterhage, Hannes ; Müller, Andy ; Prusseit, Jens ; Chernihovskyi, Anton ; Staniek, Matthäus ; Krug, Dieter ; Bialonski, Stephan ; Elger, Christian E</creator><creatorcontrib>Lehnertz, Klaus ; Mormann, Florian ; Osterhage, Hannes ; Müller, Andy ; Prusseit, Jens ; Chernihovskyi, Anton ; Staniek, Matthäus ; Krug, Dieter ; Bialonski, Stephan ; Elger, Christian E</creatorcontrib><description>Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.</description><identifier>ISSN: 0736-0258</identifier><identifier>EISSN: 1537-1603</identifier><identifier>DOI: 10.1097/WNP.0b013e3180336f16</identifier><identifier>PMID: 17414970</identifier><language>eng</language><publisher>United States: Copyright American Clinical Neurophysiology Society</publisher><subject>Algorithms ; Electroencephalography - history ; Electroencephalography - methods ; History, 20th Century ; History, 21st Century ; Humans ; Predictive Value of Tests ; Reproducibility of Results ; Retrospective Studies ; Seizures - diagnosis ; Seizures - epidemiology ; Seizures - history ; Seizures - physiopathology ; Time Factors</subject><ispartof>Journal of clinical neurophysiology, 2007-04, Vol.24 (2), p.147-153</ispartof><rights>Copyright © 2007 American Clinical Neurophysiology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</citedby><cites>FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17414970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehnertz, Klaus</creatorcontrib><creatorcontrib>Mormann, Florian</creatorcontrib><creatorcontrib>Osterhage, Hannes</creatorcontrib><creatorcontrib>Müller, Andy</creatorcontrib><creatorcontrib>Prusseit, Jens</creatorcontrib><creatorcontrib>Chernihovskyi, Anton</creatorcontrib><creatorcontrib>Staniek, Matthäus</creatorcontrib><creatorcontrib>Krug, Dieter</creatorcontrib><creatorcontrib>Bialonski, Stephan</creatorcontrib><creatorcontrib>Elger, Christian E</creatorcontrib><title>State-of-the-Art of Seizure Prediction</title><title>Journal of clinical neurophysiology</title><addtitle>J Clin Neurophysiol</addtitle><description>Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.</description><subject>Algorithms</subject><subject>Electroencephalography - history</subject><subject>Electroencephalography - methods</subject><subject>History, 20th Century</subject><subject>History, 21st Century</subject><subject>Humans</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Seizures - diagnosis</subject><subject>Seizures - epidemiology</subject><subject>Seizures - history</subject><subject>Seizures - physiopathology</subject><subject>Time Factors</subject><issn>0736-0258</issn><issn>1537-1603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9LAzEQxYMotla_gUhPvaVONtlk91iK_6BooYrHsMlO6Oq2W5MsRT-9W1ooePE0M483b4YfIdcMxgxydfv-PB-DAcaRsww4l47JE9JnKVeUSeCnpA-KSwpJmvXIRQgfAExxnpyTHlOCiVxBn4wWsYhIG0fjEunEx2HjhgusflqPw7nHsrKxataX5MwVdcCrQx2Qt_u71-kjnb08PE0nM2p5xjLqQOboFFhloRSFKkplDWaqtIjWGMNM17CES7BgpeRJmRZgTO6gTDuN8QEZ7XM3vvlqMUS9qoLFui7W2LRBK-BpDlL8a0xA5AAdgAERe6P1TQgend74alX4b81A70DqDqT-C7Jbuznkt2aF5XHpQO6Yu23qiD581u0WvV5iUcel7k6DkDmjSfcDiG6iOynjv0Kaff0</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Lehnertz, Klaus</creator><creator>Mormann, Florian</creator><creator>Osterhage, Hannes</creator><creator>Müller, Andy</creator><creator>Prusseit, Jens</creator><creator>Chernihovskyi, Anton</creator><creator>Staniek, Matthäus</creator><creator>Krug, Dieter</creator><creator>Bialonski, Stephan</creator><creator>Elger, Christian E</creator><general>Copyright American Clinical Neurophysiology Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200704</creationdate><title>State-of-the-Art of Seizure Prediction</title><author>Lehnertz, Klaus ; Mormann, Florian ; Osterhage, Hannes ; Müller, Andy ; Prusseit, Jens ; Chernihovskyi, Anton ; Staniek, Matthäus ; Krug, Dieter ; Bialonski, Stephan ; Elger, Christian E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Electroencephalography - history</topic><topic>Electroencephalography - methods</topic><topic>History, 20th Century</topic><topic>History, 21st Century</topic><topic>Humans</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Seizures - diagnosis</topic><topic>Seizures - epidemiology</topic><topic>Seizures - history</topic><topic>Seizures - physiopathology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehnertz, Klaus</creatorcontrib><creatorcontrib>Mormann, Florian</creatorcontrib><creatorcontrib>Osterhage, Hannes</creatorcontrib><creatorcontrib>Müller, Andy</creatorcontrib><creatorcontrib>Prusseit, Jens</creatorcontrib><creatorcontrib>Chernihovskyi, Anton</creatorcontrib><creatorcontrib>Staniek, Matthäus</creatorcontrib><creatorcontrib>Krug, Dieter</creatorcontrib><creatorcontrib>Bialonski, Stephan</creatorcontrib><creatorcontrib>Elger, Christian E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehnertz, Klaus</au><au>Mormann, Florian</au><au>Osterhage, Hannes</au><au>Müller, Andy</au><au>Prusseit, Jens</au><au>Chernihovskyi, Anton</au><au>Staniek, Matthäus</au><au>Krug, Dieter</au><au>Bialonski, Stephan</au><au>Elger, Christian E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-Art of Seizure Prediction</atitle><jtitle>Journal of clinical neurophysiology</jtitle><addtitle>J Clin Neurophysiol</addtitle><date>2007-04</date><risdate>2007</risdate><volume>24</volume><issue>2</issue><spage>147</spage><epage>153</epage><pages>147-153</pages><issn>0736-0258</issn><eissn>1537-1603</eissn><abstract>Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.</abstract><cop>United States</cop><pub>Copyright American Clinical Neurophysiology Society</pub><pmid>17414970</pmid><doi>10.1097/WNP.0b013e3180336f16</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0736-0258
ispartof Journal of clinical neurophysiology, 2007-04, Vol.24 (2), p.147-153
issn 0736-0258
1537-1603
language eng
recordid cdi_proquest_miscellaneous_70359064
source MEDLINE; Journals@Ovid Complete
subjects Algorithms
Electroencephalography - history
Electroencephalography - methods
History, 20th Century
History, 21st Century
Humans
Predictive Value of Tests
Reproducibility of Results
Retrospective Studies
Seizures - diagnosis
Seizures - epidemiology
Seizures - history
Seizures - physiopathology
Time Factors
title State-of-the-Art of Seizure Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-Art%20of%20Seizure%20Prediction&rft.jtitle=Journal%20of%20clinical%20neurophysiology&rft.au=Lehnertz,%20Klaus&rft.date=2007-04&rft.volume=24&rft.issue=2&rft.spage=147&rft.epage=153&rft.pages=147-153&rft.issn=0736-0258&rft.eissn=1537-1603&rft_id=info:doi/10.1097/WNP.0b013e3180336f16&rft_dat=%3Cproquest_cross%3E20490007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20490007&rft_id=info:pmid/17414970&rfr_iscdi=true