State-of-the-Art of Seizure Prediction
Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the...
Gespeichert in:
Veröffentlicht in: | Journal of clinical neurophysiology 2007-04, Vol.24 (2), p.147-153 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Journal of clinical neurophysiology |
container_volume | 24 |
creator | Lehnertz, Klaus Mormann, Florian Osterhage, Hannes Müller, Andy Prusseit, Jens Chernihovskyi, Anton Staniek, Matthäus Krug, Dieter Bialonski, Stephan Elger, Christian E |
description | Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development. |
doi_str_mv | 10.1097/WNP.0b013e3180336f16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70359064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20490007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMotla_gUhPvaVONtlk91iK_6BooYrHsMlO6Oq2W5MsRT-9W1ooePE0M483b4YfIdcMxgxydfv-PB-DAcaRsww4l47JE9JnKVeUSeCnpA-KSwpJmvXIRQgfAExxnpyTHlOCiVxBn4wWsYhIG0fjEunEx2HjhgusflqPw7nHsrKxataX5MwVdcCrQx2Qt_u71-kjnb08PE0nM2p5xjLqQOboFFhloRSFKkplDWaqtIjWGMNM17CES7BgpeRJmRZgTO6gTDuN8QEZ7XM3vvlqMUS9qoLFui7W2LRBK-BpDlL8a0xA5AAdgAERe6P1TQgend74alX4b81A70DqDqT-C7Jbuznkt2aF5XHpQO6Yu23qiD581u0WvV5iUcel7k6DkDmjSfcDiG6iOynjv0Kaff0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20490007</pqid></control><display><type>article</type><title>State-of-the-Art of Seizure Prediction</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Lehnertz, Klaus ; Mormann, Florian ; Osterhage, Hannes ; Müller, Andy ; Prusseit, Jens ; Chernihovskyi, Anton ; Staniek, Matthäus ; Krug, Dieter ; Bialonski, Stephan ; Elger, Christian E</creator><creatorcontrib>Lehnertz, Klaus ; Mormann, Florian ; Osterhage, Hannes ; Müller, Andy ; Prusseit, Jens ; Chernihovskyi, Anton ; Staniek, Matthäus ; Krug, Dieter ; Bialonski, Stephan ; Elger, Christian E</creatorcontrib><description>Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.</description><identifier>ISSN: 0736-0258</identifier><identifier>EISSN: 1537-1603</identifier><identifier>DOI: 10.1097/WNP.0b013e3180336f16</identifier><identifier>PMID: 17414970</identifier><language>eng</language><publisher>United States: Copyright American Clinical Neurophysiology Society</publisher><subject>Algorithms ; Electroencephalography - history ; Electroencephalography - methods ; History, 20th Century ; History, 21st Century ; Humans ; Predictive Value of Tests ; Reproducibility of Results ; Retrospective Studies ; Seizures - diagnosis ; Seizures - epidemiology ; Seizures - history ; Seizures - physiopathology ; Time Factors</subject><ispartof>Journal of clinical neurophysiology, 2007-04, Vol.24 (2), p.147-153</ispartof><rights>Copyright © 2007 American Clinical Neurophysiology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</citedby><cites>FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17414970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehnertz, Klaus</creatorcontrib><creatorcontrib>Mormann, Florian</creatorcontrib><creatorcontrib>Osterhage, Hannes</creatorcontrib><creatorcontrib>Müller, Andy</creatorcontrib><creatorcontrib>Prusseit, Jens</creatorcontrib><creatorcontrib>Chernihovskyi, Anton</creatorcontrib><creatorcontrib>Staniek, Matthäus</creatorcontrib><creatorcontrib>Krug, Dieter</creatorcontrib><creatorcontrib>Bialonski, Stephan</creatorcontrib><creatorcontrib>Elger, Christian E</creatorcontrib><title>State-of-the-Art of Seizure Prediction</title><title>Journal of clinical neurophysiology</title><addtitle>J Clin Neurophysiol</addtitle><description>Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.</description><subject>Algorithms</subject><subject>Electroencephalography - history</subject><subject>Electroencephalography - methods</subject><subject>History, 20th Century</subject><subject>History, 21st Century</subject><subject>Humans</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Seizures - diagnosis</subject><subject>Seizures - epidemiology</subject><subject>Seizures - history</subject><subject>Seizures - physiopathology</subject><subject>Time Factors</subject><issn>0736-0258</issn><issn>1537-1603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9LAzEQxYMotla_gUhPvaVONtlk91iK_6BooYrHsMlO6Oq2W5MsRT-9W1ooePE0M483b4YfIdcMxgxydfv-PB-DAcaRsww4l47JE9JnKVeUSeCnpA-KSwpJmvXIRQgfAExxnpyTHlOCiVxBn4wWsYhIG0fjEunEx2HjhgusflqPw7nHsrKxataX5MwVdcCrQx2Qt_u71-kjnb08PE0nM2p5xjLqQOboFFhloRSFKkplDWaqtIjWGMNM17CES7BgpeRJmRZgTO6gTDuN8QEZ7XM3vvlqMUS9qoLFui7W2LRBK-BpDlL8a0xA5AAdgAERe6P1TQgend74alX4b81A70DqDqT-C7Jbuznkt2aF5XHpQO6Yu23qiD581u0WvV5iUcel7k6DkDmjSfcDiG6iOynjv0Kaff0</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Lehnertz, Klaus</creator><creator>Mormann, Florian</creator><creator>Osterhage, Hannes</creator><creator>Müller, Andy</creator><creator>Prusseit, Jens</creator><creator>Chernihovskyi, Anton</creator><creator>Staniek, Matthäus</creator><creator>Krug, Dieter</creator><creator>Bialonski, Stephan</creator><creator>Elger, Christian E</creator><general>Copyright American Clinical Neurophysiology Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200704</creationdate><title>State-of-the-Art of Seizure Prediction</title><author>Lehnertz, Klaus ; Mormann, Florian ; Osterhage, Hannes ; Müller, Andy ; Prusseit, Jens ; Chernihovskyi, Anton ; Staniek, Matthäus ; Krug, Dieter ; Bialonski, Stephan ; Elger, Christian E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3818-f069ef70c7c0d4a7ad7cbe87dceecbbb1bcee12360c0c6632d5a0bb9f0d560c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Electroencephalography - history</topic><topic>Electroencephalography - methods</topic><topic>History, 20th Century</topic><topic>History, 21st Century</topic><topic>Humans</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Seizures - diagnosis</topic><topic>Seizures - epidemiology</topic><topic>Seizures - history</topic><topic>Seizures - physiopathology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehnertz, Klaus</creatorcontrib><creatorcontrib>Mormann, Florian</creatorcontrib><creatorcontrib>Osterhage, Hannes</creatorcontrib><creatorcontrib>Müller, Andy</creatorcontrib><creatorcontrib>Prusseit, Jens</creatorcontrib><creatorcontrib>Chernihovskyi, Anton</creatorcontrib><creatorcontrib>Staniek, Matthäus</creatorcontrib><creatorcontrib>Krug, Dieter</creatorcontrib><creatorcontrib>Bialonski, Stephan</creatorcontrib><creatorcontrib>Elger, Christian E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehnertz, Klaus</au><au>Mormann, Florian</au><au>Osterhage, Hannes</au><au>Müller, Andy</au><au>Prusseit, Jens</au><au>Chernihovskyi, Anton</au><au>Staniek, Matthäus</au><au>Krug, Dieter</au><au>Bialonski, Stephan</au><au>Elger, Christian E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-Art of Seizure Prediction</atitle><jtitle>Journal of clinical neurophysiology</jtitle><addtitle>J Clin Neurophysiol</addtitle><date>2007-04</date><risdate>2007</risdate><volume>24</volume><issue>2</issue><spage>147</spage><epage>153</epage><pages>147-153</pages><issn>0736-0258</issn><eissn>1537-1603</eissn><abstract>Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.</abstract><cop>United States</cop><pub>Copyright American Clinical Neurophysiology Society</pub><pmid>17414970</pmid><doi>10.1097/WNP.0b013e3180336f16</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0258 |
ispartof | Journal of clinical neurophysiology, 2007-04, Vol.24 (2), p.147-153 |
issn | 0736-0258 1537-1603 |
language | eng |
recordid | cdi_proquest_miscellaneous_70359064 |
source | MEDLINE; Journals@Ovid Complete |
subjects | Algorithms Electroencephalography - history Electroencephalography - methods History, 20th Century History, 21st Century Humans Predictive Value of Tests Reproducibility of Results Retrospective Studies Seizures - diagnosis Seizures - epidemiology Seizures - history Seizures - physiopathology Time Factors |
title | State-of-the-Art of Seizure Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-Art%20of%20Seizure%20Prediction&rft.jtitle=Journal%20of%20clinical%20neurophysiology&rft.au=Lehnertz,%20Klaus&rft.date=2007-04&rft.volume=24&rft.issue=2&rft.spage=147&rft.epage=153&rft.pages=147-153&rft.issn=0736-0258&rft.eissn=1537-1603&rft_id=info:doi/10.1097/WNP.0b013e3180336f16&rft_dat=%3Cproquest_cross%3E20490007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20490007&rft_id=info:pmid/17414970&rfr_iscdi=true |