PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug
The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using di...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2008-04, Vol.97 (4), p.1530-1542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1542 |
---|---|
container_issue | 4 |
container_start_page | 1530 |
container_title | Journal of pharmaceutical sciences |
container_volume | 97 |
creator | Sahana, D.K. Mittal, G. Bhardwaj, V. Kumar, M.N.V.Ravi |
description | The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008 |
doi_str_mv | 10.1002/jps.21158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70356544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354916325497</els_id><sourcerecordid>70356544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</originalsourceid><addsrcrecordid>eNp1kd1uEzEQhVcIREPhghdAvgGJi21t73p_uGvTNk2VNBWl9NKa3Z1N3Tp2sDdp82y8HM4PRUhwZXnON3PGPlH0ntEDRik_vJ_7A86YKF5EPSY4jTPK8pdRL2g8TkRa7kVvvL-nlGZUiNfRHstzzmlZ9KKfV6PBEbkEY-fgOlVr9KS1jkwcaHKCWi3RrYhtyfmqcXZ-ZytVkxO3mPovZGhavUBT41qfuCmYoF1bvUTTEWv-mkrOrJtBp0IZTEO-okbwSI7xDpYq-A0N-a46Zzfq5rK05MYrMyWnvnPQKKsJeAJkbBvUmxXeRq9a0B7f7c796Obs9Fv_PB5NBsP-0SiuBWVFnFYckoKLvMxoVaYZAis4L6pEFKHWtlXG8zIFVue0FRyLloU2BikrQWRFzpP96NN27tzZHwv0nZwpX6PWYNAuvMxpIjKRpgH8vAVrZ7132Mq5UzNwK8moXCclQ1Jyk1RgP-yGLqoZNn_IXTQB-LgDwNegWwemVv6Z45QH15IG7nDLPSqNq_87your69_W8bZD-Q6fnjvAPcgsT3Ihby8HcnyR9I9vx33ZD3yy5TF88lKhk75W69wb5bDuZGPVPx74C_T9ywg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70356544</pqid></control><display><type>article</type><title>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Sahana, D.K. ; Mittal, G. ; Bhardwaj, V. ; Kumar, M.N.V.Ravi</creator><creatorcontrib>Sahana, D.K. ; Mittal, G. ; Bhardwaj, V. ; Kumar, M.N.V.Ravi</creatorcontrib><description>The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.21158</identifier><identifier>PMID: 17722098</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>Administration, Oral ; Animals ; biocompatible ; biodegradable ; Biological and medical sciences ; Drug Delivery Systems ; Estradiol - administration & dosage ; Estradiol - chemistry ; Estradiol - pharmacokinetics ; General pharmacology ; Lactic Acid - administration & dosage ; Lactic Acid - chemistry ; Liver - drug effects ; Liver - pathology ; Male ; Medical sciences ; nanoparticle ; Nanoparticles - chemistry ; oral delivery ; organic solvents ; Particle Size ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Polyglycolic Acid - administration & dosage ; Polyglycolic Acid - chemistry ; Polymers - administration & dosage ; Polymers - chemistry ; Rats ; Rats, Sprague-Dawley ; Solubility ; Solvents</subject><ispartof>Journal of pharmaceutical sciences, 2008-04, Vol.97 (4), p.1530-1542</ispartof><rights>2008 Wiley‐Liss, Inc.</rights><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2008 INIST-CNRS</rights><rights>2007 Wiley-Liss, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</citedby><cites>FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.21158$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.21158$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20235690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17722098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahana, D.K.</creatorcontrib><creatorcontrib>Mittal, G.</creatorcontrib><creatorcontrib>Bhardwaj, V.</creatorcontrib><creatorcontrib>Kumar, M.N.V.Ravi</creatorcontrib><title>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>biocompatible</subject><subject>biodegradable</subject><subject>Biological and medical sciences</subject><subject>Drug Delivery Systems</subject><subject>Estradiol - administration & dosage</subject><subject>Estradiol - chemistry</subject><subject>Estradiol - pharmacokinetics</subject><subject>General pharmacology</subject><subject>Lactic Acid - administration & dosage</subject><subject>Lactic Acid - chemistry</subject><subject>Liver - drug effects</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>nanoparticle</subject><subject>Nanoparticles - chemistry</subject><subject>oral delivery</subject><subject>organic solvents</subject><subject>Particle Size</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Polyglycolic Acid - administration & dosage</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymers - administration & dosage</subject><subject>Polymers - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Solubility</subject><subject>Solvents</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1uEzEQhVcIREPhghdAvgGJi21t73p_uGvTNk2VNBWl9NKa3Z1N3Tp2sDdp82y8HM4PRUhwZXnON3PGPlH0ntEDRik_vJ_7A86YKF5EPSY4jTPK8pdRL2g8TkRa7kVvvL-nlGZUiNfRHstzzmlZ9KKfV6PBEbkEY-fgOlVr9KS1jkwcaHKCWi3RrYhtyfmqcXZ-ZytVkxO3mPovZGhavUBT41qfuCmYoF1bvUTTEWv-mkrOrJtBp0IZTEO-okbwSI7xDpYq-A0N-a46Zzfq5rK05MYrMyWnvnPQKKsJeAJkbBvUmxXeRq9a0B7f7c796Obs9Fv_PB5NBsP-0SiuBWVFnFYckoKLvMxoVaYZAis4L6pEFKHWtlXG8zIFVue0FRyLloU2BikrQWRFzpP96NN27tzZHwv0nZwpX6PWYNAuvMxpIjKRpgH8vAVrZ7132Mq5UzNwK8moXCclQ1Jyk1RgP-yGLqoZNn_IXTQB-LgDwNegWwemVv6Z45QH15IG7nDLPSqNq_87your69_W8bZD-Q6fnjvAPcgsT3Ihby8HcnyR9I9vx33ZD3yy5TF88lKhk75W69wb5bDuZGPVPx74C_T9ywg</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Sahana, D.K.</creator><creator>Mittal, G.</creator><creator>Bhardwaj, V.</creator><creator>Kumar, M.N.V.Ravi</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200804</creationdate><title>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</title><author>Sahana, D.K. ; Mittal, G. ; Bhardwaj, V. ; Kumar, M.N.V.Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>biocompatible</topic><topic>biodegradable</topic><topic>Biological and medical sciences</topic><topic>Drug Delivery Systems</topic><topic>Estradiol - administration & dosage</topic><topic>Estradiol - chemistry</topic><topic>Estradiol - pharmacokinetics</topic><topic>General pharmacology</topic><topic>Lactic Acid - administration & dosage</topic><topic>Lactic Acid - chemistry</topic><topic>Liver - drug effects</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>nanoparticle</topic><topic>Nanoparticles - chemistry</topic><topic>oral delivery</topic><topic>organic solvents</topic><topic>Particle Size</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Polyglycolic Acid - administration & dosage</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymers - administration & dosage</topic><topic>Polymers - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Solubility</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahana, D.K.</creatorcontrib><creatorcontrib>Mittal, G.</creatorcontrib><creatorcontrib>Bhardwaj, V.</creatorcontrib><creatorcontrib>Kumar, M.N.V.Ravi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahana, D.K.</au><au>Mittal, G.</au><au>Bhardwaj, V.</au><au>Kumar, M.N.V.Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2008-04</date><risdate>2008</risdate><volume>97</volume><issue>4</issue><spage>1530</spage><epage>1542</epage><pages>1530-1542</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>17722098</pmid><doi>10.1002/jps.21158</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2008-04, Vol.97 (4), p.1530-1542 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_70356544 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Administration, Oral Animals biocompatible biodegradable Biological and medical sciences Drug Delivery Systems Estradiol - administration & dosage Estradiol - chemistry Estradiol - pharmacokinetics General pharmacology Lactic Acid - administration & dosage Lactic Acid - chemistry Liver - drug effects Liver - pathology Male Medical sciences nanoparticle Nanoparticles - chemistry oral delivery organic solvents Particle Size Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Polyglycolic Acid - administration & dosage Polyglycolic Acid - chemistry Polymers - administration & dosage Polymers - chemistry Rats Rats, Sprague-Dawley Solubility Solvents |
title | PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLGA%20Nanoparticles%20for%20Oral%20Delivery%20of%20Hydrophobic%20Drugs:%20Influence%20of%20Organic%20Solvent%20on%20Nanoparticle%20Formation%20and%20Release%20Behavior%20In%20Vitro%20and%20In%20Vivo%20Using%20Estradiol%20as%20a%20Model%20Drug&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Sahana,%20D.K.&rft.date=2008-04&rft.volume=97&rft.issue=4&rft.spage=1530&rft.epage=1542&rft.pages=1530-1542&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.21158&rft_dat=%3Cproquest_cross%3E70356544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70356544&rft_id=info:pmid/17722098&rft_els_id=S0022354916325497&rfr_iscdi=true |