PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug

The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2008-04, Vol.97 (4), p.1530-1542
Hauptverfasser: Sahana, D.K., Mittal, G., Bhardwaj, V., Kumar, M.N.V.Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1542
container_issue 4
container_start_page 1530
container_title Journal of pharmaceutical sciences
container_volume 97
creator Sahana, D.K.
Mittal, G.
Bhardwaj, V.
Kumar, M.N.V.Ravi
description The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008
doi_str_mv 10.1002/jps.21158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70356544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354916325497</els_id><sourcerecordid>70356544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</originalsourceid><addsrcrecordid>eNp1kd1uEzEQhVcIREPhghdAvgGJi21t73p_uGvTNk2VNBWl9NKa3Z1N3Tp2sDdp82y8HM4PRUhwZXnON3PGPlH0ntEDRik_vJ_7A86YKF5EPSY4jTPK8pdRL2g8TkRa7kVvvL-nlGZUiNfRHstzzmlZ9KKfV6PBEbkEY-fgOlVr9KS1jkwcaHKCWi3RrYhtyfmqcXZ-ZytVkxO3mPovZGhavUBT41qfuCmYoF1bvUTTEWv-mkrOrJtBp0IZTEO-okbwSI7xDpYq-A0N-a46Zzfq5rK05MYrMyWnvnPQKKsJeAJkbBvUmxXeRq9a0B7f7c796Obs9Fv_PB5NBsP-0SiuBWVFnFYckoKLvMxoVaYZAis4L6pEFKHWtlXG8zIFVue0FRyLloU2BikrQWRFzpP96NN27tzZHwv0nZwpX6PWYNAuvMxpIjKRpgH8vAVrZ7132Mq5UzNwK8moXCclQ1Jyk1RgP-yGLqoZNn_IXTQB-LgDwNegWwemVv6Z45QH15IG7nDLPSqNq_87your69_W8bZD-Q6fnjvAPcgsT3Ihby8HcnyR9I9vx33ZD3yy5TF88lKhk75W69wb5bDuZGPVPx74C_T9ywg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70356544</pqid></control><display><type>article</type><title>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Sahana, D.K. ; Mittal, G. ; Bhardwaj, V. ; Kumar, M.N.V.Ravi</creator><creatorcontrib>Sahana, D.K. ; Mittal, G. ; Bhardwaj, V. ; Kumar, M.N.V.Ravi</creatorcontrib><description>The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.21158</identifier><identifier>PMID: 17722098</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>Administration, Oral ; Animals ; biocompatible ; biodegradable ; Biological and medical sciences ; Drug Delivery Systems ; Estradiol - administration &amp; dosage ; Estradiol - chemistry ; Estradiol - pharmacokinetics ; General pharmacology ; Lactic Acid - administration &amp; dosage ; Lactic Acid - chemistry ; Liver - drug effects ; Liver - pathology ; Male ; Medical sciences ; nanoparticle ; Nanoparticles - chemistry ; oral delivery ; organic solvents ; Particle Size ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Polyglycolic Acid - administration &amp; dosage ; Polyglycolic Acid - chemistry ; Polymers - administration &amp; dosage ; Polymers - chemistry ; Rats ; Rats, Sprague-Dawley ; Solubility ; Solvents</subject><ispartof>Journal of pharmaceutical sciences, 2008-04, Vol.97 (4), p.1530-1542</ispartof><rights>2008 Wiley‐Liss, Inc.</rights><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2008 INIST-CNRS</rights><rights>2007 Wiley-Liss, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</citedby><cites>FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.21158$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.21158$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20235690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17722098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahana, D.K.</creatorcontrib><creatorcontrib>Mittal, G.</creatorcontrib><creatorcontrib>Bhardwaj, V.</creatorcontrib><creatorcontrib>Kumar, M.N.V.Ravi</creatorcontrib><title>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>biocompatible</subject><subject>biodegradable</subject><subject>Biological and medical sciences</subject><subject>Drug Delivery Systems</subject><subject>Estradiol - administration &amp; dosage</subject><subject>Estradiol - chemistry</subject><subject>Estradiol - pharmacokinetics</subject><subject>General pharmacology</subject><subject>Lactic Acid - administration &amp; dosage</subject><subject>Lactic Acid - chemistry</subject><subject>Liver - drug effects</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>nanoparticle</subject><subject>Nanoparticles - chemistry</subject><subject>oral delivery</subject><subject>organic solvents</subject><subject>Particle Size</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Polyglycolic Acid - administration &amp; dosage</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymers - administration &amp; dosage</subject><subject>Polymers - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Solubility</subject><subject>Solvents</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1uEzEQhVcIREPhghdAvgGJi21t73p_uGvTNk2VNBWl9NKa3Z1N3Tp2sDdp82y8HM4PRUhwZXnON3PGPlH0ntEDRik_vJ_7A86YKF5EPSY4jTPK8pdRL2g8TkRa7kVvvL-nlGZUiNfRHstzzmlZ9KKfV6PBEbkEY-fgOlVr9KS1jkwcaHKCWi3RrYhtyfmqcXZ-ZytVkxO3mPovZGhavUBT41qfuCmYoF1bvUTTEWv-mkrOrJtBp0IZTEO-okbwSI7xDpYq-A0N-a46Zzfq5rK05MYrMyWnvnPQKKsJeAJkbBvUmxXeRq9a0B7f7c796Obs9Fv_PB5NBsP-0SiuBWVFnFYckoKLvMxoVaYZAis4L6pEFKHWtlXG8zIFVue0FRyLloU2BikrQWRFzpP96NN27tzZHwv0nZwpX6PWYNAuvMxpIjKRpgH8vAVrZ7132Mq5UzNwK8moXCclQ1Jyk1RgP-yGLqoZNn_IXTQB-LgDwNegWwemVv6Z45QH15IG7nDLPSqNq_87your69_W8bZD-Q6fnjvAPcgsT3Ihby8HcnyR9I9vx33ZD3yy5TF88lKhk75W69wb5bDuZGPVPx74C_T9ywg</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Sahana, D.K.</creator><creator>Mittal, G.</creator><creator>Bhardwaj, V.</creator><creator>Kumar, M.N.V.Ravi</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200804</creationdate><title>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</title><author>Sahana, D.K. ; Mittal, G. ; Bhardwaj, V. ; Kumar, M.N.V.Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5018-4b2a38257960b946ea18228b358579ffb62794a1c70f52e8f15011a419a568723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>biocompatible</topic><topic>biodegradable</topic><topic>Biological and medical sciences</topic><topic>Drug Delivery Systems</topic><topic>Estradiol - administration &amp; dosage</topic><topic>Estradiol - chemistry</topic><topic>Estradiol - pharmacokinetics</topic><topic>General pharmacology</topic><topic>Lactic Acid - administration &amp; dosage</topic><topic>Lactic Acid - chemistry</topic><topic>Liver - drug effects</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>nanoparticle</topic><topic>Nanoparticles - chemistry</topic><topic>oral delivery</topic><topic>organic solvents</topic><topic>Particle Size</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Polyglycolic Acid - administration &amp; dosage</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymers - administration &amp; dosage</topic><topic>Polymers - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Solubility</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahana, D.K.</creatorcontrib><creatorcontrib>Mittal, G.</creatorcontrib><creatorcontrib>Bhardwaj, V.</creatorcontrib><creatorcontrib>Kumar, M.N.V.Ravi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahana, D.K.</au><au>Mittal, G.</au><au>Bhardwaj, V.</au><au>Kumar, M.N.V.Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2008-04</date><risdate>2008</risdate><volume>97</volume><issue>4</issue><spage>1530</spage><epage>1542</epage><pages>1530-1542</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>The aim of present investigation was to screen different solvents for optimizing nanoparticle preparation in terms of particle size, entrapment efficiency, and finally, release behavior using a model drug estradiol. Nanoparticles were prepared following emulsion–diffusion–evaporation method using didodecyldimethyl ammonium bromide (DMAB) or polyvinyl alcohol (PVA) as stabilizers. Ethyl acetate (EA), acetone (ACE), chloroform (CHL), and dichloromethane (DCM) were used as organic solvents either individually or in combinations. DMAB when used as surfactant led to smaller particle size as compared to PVA irrespective of the solvents and combinations used, but on the other hand, PVA produced particles with higher entrapment when combinations of solvents used. DCM in combination with EA resulted in highest entrapment with both the stabilizers. All the formulations exhibited similar in vitro release profile (Zero order) irrespective of stabilizer (DMAB or PVA) used, however, the average release per day was higher in case of DCM formulations due to greater entrapment. In situ uptake studies suggest that smaller the particle size better is the uptake. The bioavailability from nanoparticles was assessed in male Sprague Dawley (SD) rats at a dose of 1 mg drug/rat. EA/DMAB (size 116.0 ± 2.6 nm) and DCM:EA 70:30/DMAB (size 253.0 ± 5.5 nm) showed the release for 9 and 5 days, respectively, whereas EA/PVA (size 279.3 ± 2.5 nm) released the drug over the periods of 3 days suggesting that particle size has significant role in determining the fate of nanoparticles in vivo. Histopathological examination revealed absence of any inflammatory response with the formulations under the studied period. © 2007 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1530–1542, 2008</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>17722098</pmid><doi>10.1002/jps.21158</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2008-04, Vol.97 (4), p.1530-1542
issn 0022-3549
1520-6017
language eng
recordid cdi_proquest_miscellaneous_70356544
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Administration, Oral
Animals
biocompatible
biodegradable
Biological and medical sciences
Drug Delivery Systems
Estradiol - administration & dosage
Estradiol - chemistry
Estradiol - pharmacokinetics
General pharmacology
Lactic Acid - administration & dosage
Lactic Acid - chemistry
Liver - drug effects
Liver - pathology
Male
Medical sciences
nanoparticle
Nanoparticles - chemistry
oral delivery
organic solvents
Particle Size
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Polyglycolic Acid - administration & dosage
Polyglycolic Acid - chemistry
Polymers - administration & dosage
Polymers - chemistry
Rats
Rats, Sprague-Dawley
Solubility
Solvents
title PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLGA%20Nanoparticles%20for%20Oral%20Delivery%20of%20Hydrophobic%20Drugs:%20Influence%20of%20Organic%20Solvent%20on%20Nanoparticle%20Formation%20and%20Release%20Behavior%20In%20Vitro%20and%20In%20Vivo%20Using%20Estradiol%20as%20a%20Model%20Drug&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Sahana,%20D.K.&rft.date=2008-04&rft.volume=97&rft.issue=4&rft.spage=1530&rft.epage=1542&rft.pages=1530-1542&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.21158&rft_dat=%3Cproquest_cross%3E70356544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70356544&rft_id=info:pmid/17722098&rft_els_id=S0022354916325497&rfr_iscdi=true