Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules

The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. Whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-02, Vol.319 (5867), p.1247-1250
Hauptverfasser: Hu, Junjie, Shibata, Yoko, Voss, Christiane, Shemesh, Tom, Li, Zongli, Coughlin, Margaret, Kozlov, Michael M, Rapoport, Tom A, Prinz, William A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 5867
container_start_page 1247
container_title Science (American Association for the Advancement of Science)
container_volume 319
creator Hu, Junjie
Shibata, Yoko
Voss, Christiane
Shemesh, Tom
Li, Zongli
Coughlin, Margaret
Kozlov, Michael M
Rapoport, Tom A
Prinz, William A
description The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. When we purified yeast Yop1p and incorporated it into proteoliposomes, narrow tubules (~15 to 17 nanometers in diameter) were generated. Tubule formation occurred with different lipids; required essentially only the central portion of the protein, including its two long hydrophobic segments; and was prevented by mutations that affected tubule formation in vivo. Tubules were also formed by reconstituted purified yeast Rtn1p. Tubules made in vitro were narrower than normal ER tubules, due to a higher concentration of tubule-inducing proteins. The shape and oligomerization of the "morphogenic" proteins could explain the formation of the tubular ER.
doi_str_mv 10.1126/science.1153634
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70353664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20053486</jstor_id><sourcerecordid>20053486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-16cd5009b2538c3d0aa43b98891a9fcb4696aa010d4d1065416f7e2909e216e23</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCmRMQVYJb6Pgz9hGtCq20CATt2XKcSZtVEi92jMR_j6uNAHHhNBq93zzNzCPkBYV3lDJ1kfyAs8fSSK64eEQ2FIysDQP-mGwAuKo1NPKEnKa0Byia4U_JCdUcDGixIbtPOLXRzVh9iWHBYU5V6KvlHqvLuQuH0aVp8NVXXAafxzxV13OXPVZXw919vc3xh1tyxOomt3nE9Iw86d2Y8Plaz8jth8ub7VW9-_zxevt-V3vJ1FJT5TtZdmmZ5NrzDpwTvDVaG-pM71uhjHIOKHSio6CkoKpvkBkwyKhCxs_I26PvIYbvGdNipyF5HMdyR8jJNsDLO5T4L8hANpw2soDn_4D7kONcjrCMcqmNkKpAF0fIx5BSxN4e4jC5-NNSsA9x2DUOu8ZRJl6ttrmdsPvDr_8vwJsVcMm7sS9J-CH95hhQxTjQwr08cvu0hPiXDpIL_bDa66Peu2DdXSwet9_KNAfQSirJ-C-Zy6Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213589456</pqid></control><display><type>article</type><title>Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Hu, Junjie ; Shibata, Yoko ; Voss, Christiane ; Shemesh, Tom ; Li, Zongli ; Coughlin, Margaret ; Kozlov, Michael M ; Rapoport, Tom A ; Prinz, William A</creator><creatorcontrib>Hu, Junjie ; Shibata, Yoko ; Voss, Christiane ; Shemesh, Tom ; Li, Zongli ; Coughlin, Margaret ; Kozlov, Michael M ; Rapoport, Tom A ; Prinz, William A</creatorcontrib><description>The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. When we purified yeast Yop1p and incorporated it into proteoliposomes, narrow tubules (~15 to 17 nanometers in diameter) were generated. Tubule formation occurred with different lipids; required essentially only the central portion of the protein, including its two long hydrophobic segments; and was prevented by mutations that affected tubule formation in vivo. Tubules were also formed by reconstituted purified yeast Rtn1p. Tubules made in vitro were narrower than normal ER tubules, due to a higher concentration of tubule-inducing proteins. The shape and oligomerization of the "morphogenic" proteins could explain the formation of the tubular ER.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1153634</identifier><identifier>PMID: 18309084</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Biological and medical sciences ; Biopolymers - chemistry ; Biopolymers - metabolism ; Cell membranes ; Cell structures and functions ; Cellular biology ; Cercopithecus aethiops ; COS Cells ; Curvature ; Detergents ; Endoplasmic Reticulum - chemistry ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes - chemistry ; Intracellular Membranes - ultrastructure ; Lipid Bilayers ; Lipids ; Membrane Lipids - chemistry ; Membrane proteins ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - metabolism ; Membranes ; Microscopy, Electron ; Miscellaneous ; Models, Biological ; Molecular and cellular biology ; Molecular Sequence Data ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Proteins ; Proteolipids - chemistry ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Yeasts</subject><ispartof>Science (American Association for the Advancement of Science), 2008-02, Vol.319 (5867), p.1247-1250</ispartof><rights>Copyright 2008 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-16cd5009b2538c3d0aa43b98891a9fcb4696aa010d4d1065416f7e2909e216e23</citedby><cites>FETCH-LOGICAL-c526t-16cd5009b2538c3d0aa43b98891a9fcb4696aa010d4d1065416f7e2909e216e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20053486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20053486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2883,2884,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20162301$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18309084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Junjie</creatorcontrib><creatorcontrib>Shibata, Yoko</creatorcontrib><creatorcontrib>Voss, Christiane</creatorcontrib><creatorcontrib>Shemesh, Tom</creatorcontrib><creatorcontrib>Li, Zongli</creatorcontrib><creatorcontrib>Coughlin, Margaret</creatorcontrib><creatorcontrib>Kozlov, Michael M</creatorcontrib><creatorcontrib>Rapoport, Tom A</creatorcontrib><creatorcontrib>Prinz, William A</creatorcontrib><title>Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. When we purified yeast Yop1p and incorporated it into proteoliposomes, narrow tubules (~15 to 17 nanometers in diameter) were generated. Tubule formation occurred with different lipids; required essentially only the central portion of the protein, including its two long hydrophobic segments; and was prevented by mutations that affected tubule formation in vivo. Tubules were also formed by reconstituted purified yeast Rtn1p. Tubules made in vitro were narrower than normal ER tubules, due to a higher concentration of tubule-inducing proteins. The shape and oligomerization of the "morphogenic" proteins could explain the formation of the tubular ER.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biopolymers - chemistry</subject><subject>Biopolymers - metabolism</subject><subject>Cell membranes</subject><subject>Cell structures and functions</subject><subject>Cellular biology</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Curvature</subject><subject>Detergents</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intracellular Membranes - chemistry</subject><subject>Intracellular Membranes - ultrastructure</subject><subject>Lipid Bilayers</subject><subject>Lipids</subject><subject>Membrane Lipids - chemistry</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Microscopy, Electron</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Proteolipids - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Yeasts</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotvCmRMQVYJb6Pgz9hGtCq20CATt2XKcSZtVEi92jMR_j6uNAHHhNBq93zzNzCPkBYV3lDJ1kfyAs8fSSK64eEQ2FIysDQP-mGwAuKo1NPKEnKa0Byia4U_JCdUcDGixIbtPOLXRzVh9iWHBYU5V6KvlHqvLuQuH0aVp8NVXXAafxzxV13OXPVZXw919vc3xh1tyxOomt3nE9Iw86d2Y8Plaz8jth8ub7VW9-_zxevt-V3vJ1FJT5TtZdmmZ5NrzDpwTvDVaG-pM71uhjHIOKHSio6CkoKpvkBkwyKhCxs_I26PvIYbvGdNipyF5HMdyR8jJNsDLO5T4L8hANpw2soDn_4D7kONcjrCMcqmNkKpAF0fIx5BSxN4e4jC5-NNSsA9x2DUOu8ZRJl6ttrmdsPvDr_8vwJsVcMm7sS9J-CH95hhQxTjQwr08cvu0hPiXDpIL_bDa66Peu2DdXSwet9_KNAfQSirJ-C-Zy6Sw</recordid><startdate>20080229</startdate><enddate>20080229</enddate><creator>Hu, Junjie</creator><creator>Shibata, Yoko</creator><creator>Voss, Christiane</creator><creator>Shemesh, Tom</creator><creator>Li, Zongli</creator><creator>Coughlin, Margaret</creator><creator>Kozlov, Michael M</creator><creator>Rapoport, Tom A</creator><creator>Prinz, William A</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080229</creationdate><title>Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules</title><author>Hu, Junjie ; Shibata, Yoko ; Voss, Christiane ; Shemesh, Tom ; Li, Zongli ; Coughlin, Margaret ; Kozlov, Michael M ; Rapoport, Tom A ; Prinz, William A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-16cd5009b2538c3d0aa43b98891a9fcb4696aa010d4d1065416f7e2909e216e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biopolymers - chemistry</topic><topic>Biopolymers - metabolism</topic><topic>Cell membranes</topic><topic>Cell structures and functions</topic><topic>Cellular biology</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Curvature</topic><topic>Detergents</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intracellular Membranes - chemistry</topic><topic>Intracellular Membranes - ultrastructure</topic><topic>Lipid Bilayers</topic><topic>Lipids</topic><topic>Membrane Lipids - chemistry</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Microscopy, Electron</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Proteolipids - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Junjie</creatorcontrib><creatorcontrib>Shibata, Yoko</creatorcontrib><creatorcontrib>Voss, Christiane</creatorcontrib><creatorcontrib>Shemesh, Tom</creatorcontrib><creatorcontrib>Li, Zongli</creatorcontrib><creatorcontrib>Coughlin, Margaret</creatorcontrib><creatorcontrib>Kozlov, Michael M</creatorcontrib><creatorcontrib>Rapoport, Tom A</creatorcontrib><creatorcontrib>Prinz, William A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Junjie</au><au>Shibata, Yoko</au><au>Voss, Christiane</au><au>Shemesh, Tom</au><au>Li, Zongli</au><au>Coughlin, Margaret</au><au>Kozlov, Michael M</au><au>Rapoport, Tom A</au><au>Prinz, William A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2008-02-29</date><risdate>2008</risdate><volume>319</volume><issue>5867</issue><spage>1247</spage><epage>1250</epage><pages>1247-1250</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The tubular structure of the endoplasmic reticulum (ER) appears to be generated by integral membrane proteins, the reticulons and a protein family consisting of DP1 in mammals and Yop1p in yeast. Here, individual members of these families were found to be sufficient to generate membrane tubules. When we purified yeast Yop1p and incorporated it into proteoliposomes, narrow tubules (~15 to 17 nanometers in diameter) were generated. Tubule formation occurred with different lipids; required essentially only the central portion of the protein, including its two long hydrophobic segments; and was prevented by mutations that affected tubule formation in vivo. Tubules were also formed by reconstituted purified yeast Rtn1p. Tubules made in vitro were narrower than normal ER tubules, due to a higher concentration of tubule-inducing proteins. The shape and oligomerization of the "morphogenic" proteins could explain the formation of the tubular ER.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>18309084</pmid><doi>10.1126/science.1153634</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2008-02, Vol.319 (5867), p.1247-1250
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_70353664
source MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Amino Acid Sequence
Amino acids
Animals
Biological and medical sciences
Biopolymers - chemistry
Biopolymers - metabolism
Cell membranes
Cell structures and functions
Cellular biology
Cercopithecus aethiops
COS Cells
Curvature
Detergents
Endoplasmic Reticulum - chemistry
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - ultrastructure
Fundamental and applied biological sciences. Psychology
Hydrophobic and Hydrophilic Interactions
Intracellular Membranes - chemistry
Intracellular Membranes - ultrastructure
Lipid Bilayers
Lipids
Membrane Lipids - chemistry
Membrane proteins
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - metabolism
Membranes
Microscopy, Electron
Miscellaneous
Models, Biological
Molecular and cellular biology
Molecular Sequence Data
Mutant Proteins - chemistry
Mutant Proteins - metabolism
Protein Structure, Quaternary
Protein Structure, Tertiary
Proteins
Proteolipids - chemistry
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Yeasts
title Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20Proteins%20of%20the%20Endoplasmic%20Reticulum%20Induce%20High-Curvature%20Tubules&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Hu,%20Junjie&rft.date=2008-02-29&rft.volume=319&rft.issue=5867&rft.spage=1247&rft.epage=1250&rft.pages=1247-1250&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1153634&rft_dat=%3Cjstor_proqu%3E20053486%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213589456&rft_id=info:pmid/18309084&rft_jstor_id=20053486&rfr_iscdi=true