Mechanical properties of open-cell foam synthetic thoracic vertebrae
This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2008-03, Vol.19 (3), p.1317-1323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1323 |
---|---|
container_issue | 3 |
container_start_page | 1317 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 19 |
creator | Johnson, Amy E. Keller, Tony S. |
description | This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection. |
doi_str_mv | 10.1007/s10856-007-3158-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70348803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898143211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBsZXLiL3rwmmaXUJ1Tc6DpkMhk7ZR41mQr992aYQkGQrnLgfveRcxC6JHBLAORdIKBEiqPEjAiF5RGaEiEZ5oqpYzSFTEjMBYMJOgthBQA8E-IUTYhUijLFpujhzdmlaStr6mTtu7XzfeVC0pVJ1C22rq6TsjNNErZtv3R9ZZN-2Xljo_iJsMu9cefopDR1cBe7d4Y-nx4_5i948f78Or9fYMsZ6bGQPKOKUGZyWlorqOAsLQquMuGAO0OoS4HmsVAYmgPLUkUgy5jKhbCFStkM3Yxz46XfGxd63VRhONG0rtsELYFxpYAdBBnlJHrDD4IU0mgiH1Zf_wFX3ca38beaUkIyoqLPM0RGyPouBO9KvfZVY_xWE9BDYnpMTA9ySEzL2HO1G7zJG1fsO3YRRYCOQIil9sv5_eb_p_4CacSesw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221191845</pqid></control><display><type>article</type><title>Mechanical properties of open-cell foam synthetic thoracic vertebrae</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Johnson, Amy E. ; Keller, Tony S.</creator><creatorcontrib>Johnson, Amy E. ; Keller, Tony S.</creatorcontrib><description>This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-007-3158-7</identifier><identifier>PMID: 17882383</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Biomimetics ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Bones ; Ceramics ; Chemistry and Materials Science ; Composites ; Compressive Strength ; Glass ; Humans ; Materials Science ; Materials Testing ; Natural Materials ; Polymer Sciences ; Porosity ; Regenerative Medicine/Tissue Engineering ; Stress, Mechanical ; Studies ; Surfaces and Interfaces ; Thin Films ; Thoracic Vertebrae</subject><ispartof>Journal of materials science. Materials in medicine, 2008-03, Vol.19 (3), p.1317-1323</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</citedby><cites>FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-007-3158-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-007-3158-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17882383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Amy E.</creatorcontrib><creatorcontrib>Keller, Tony S.</creatorcontrib><title>Mechanical properties of open-cell foam synthetic thoracic vertebrae</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.</description><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Bones</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compressive Strength</subject><subject>Glass</subject><subject>Humans</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stress, Mechanical</subject><subject>Studies</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Thoracic Vertebrae</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBsZXLiL3rwmmaXUJ1Tc6DpkMhk7ZR41mQr992aYQkGQrnLgfveRcxC6JHBLAORdIKBEiqPEjAiF5RGaEiEZ5oqpYzSFTEjMBYMJOgthBQA8E-IUTYhUijLFpujhzdmlaStr6mTtu7XzfeVC0pVJ1C22rq6TsjNNErZtv3R9ZZN-2Xljo_iJsMu9cefopDR1cBe7d4Y-nx4_5i948f78Or9fYMsZ6bGQPKOKUGZyWlorqOAsLQquMuGAO0OoS4HmsVAYmgPLUkUgy5jKhbCFStkM3Yxz46XfGxd63VRhONG0rtsELYFxpYAdBBnlJHrDD4IU0mgiH1Zf_wFX3ca38beaUkIyoqLPM0RGyPouBO9KvfZVY_xWE9BDYnpMTA9ySEzL2HO1G7zJG1fsO3YRRYCOQIil9sv5_eb_p_4CacSesw</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Johnson, Amy E.</creator><creator>Keller, Tony S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20080301</creationdate><title>Mechanical properties of open-cell foam synthetic thoracic vertebrae</title><author>Johnson, Amy E. ; Keller, Tony S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Bones</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compressive Strength</topic><topic>Glass</topic><topic>Humans</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stress, Mechanical</topic><topic>Studies</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Thoracic Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Amy E.</creatorcontrib><creatorcontrib>Keller, Tony S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Amy E.</au><au>Keller, Tony S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of open-cell foam synthetic thoracic vertebrae</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>19</volume><issue>3</issue><spage>1317</spage><epage>1323</epage><pages>1317-1323</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>17882383</pmid><doi>10.1007/s10856-007-3158-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2008-03, Vol.19 (3), p.1317-1323 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_70348803 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biomaterials Biomedical Engineering and Bioengineering Biomedical materials Biomimetics Bone Substitutes - chemical synthesis Bone Substitutes - chemistry Bones Ceramics Chemistry and Materials Science Composites Compressive Strength Glass Humans Materials Science Materials Testing Natural Materials Polymer Sciences Porosity Regenerative Medicine/Tissue Engineering Stress, Mechanical Studies Surfaces and Interfaces Thin Films Thoracic Vertebrae |
title | Mechanical properties of open-cell foam synthetic thoracic vertebrae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20open-cell%20foam%20synthetic%20thoracic%20vertebrae&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Johnson,%20Amy%20E.&rft.date=2008-03-01&rft.volume=19&rft.issue=3&rft.spage=1317&rft.epage=1323&rft.pages=1317-1323&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-007-3158-7&rft_dat=%3Cproquest_cross%3E1898143211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221191845&rft_id=info:pmid/17882383&rfr_iscdi=true |