Mechanical properties of open-cell foam synthetic thoracic vertebrae

This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2008-03, Vol.19 (3), p.1317-1323
Hauptverfasser: Johnson, Amy E., Keller, Tony S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1323
container_issue 3
container_start_page 1317
container_title Journal of materials science. Materials in medicine
container_volume 19
creator Johnson, Amy E.
Keller, Tony S.
description This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.
doi_str_mv 10.1007/s10856-007-3158-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70348803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898143211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBsZXLiL3rwmmaXUJ1Tc6DpkMhk7ZR41mQr992aYQkGQrnLgfveRcxC6JHBLAORdIKBEiqPEjAiF5RGaEiEZ5oqpYzSFTEjMBYMJOgthBQA8E-IUTYhUijLFpujhzdmlaStr6mTtu7XzfeVC0pVJ1C22rq6TsjNNErZtv3R9ZZN-2Xljo_iJsMu9cefopDR1cBe7d4Y-nx4_5i948f78Or9fYMsZ6bGQPKOKUGZyWlorqOAsLQquMuGAO0OoS4HmsVAYmgPLUkUgy5jKhbCFStkM3Yxz46XfGxd63VRhONG0rtsELYFxpYAdBBnlJHrDD4IU0mgiH1Zf_wFX3ca38beaUkIyoqLPM0RGyPouBO9KvfZVY_xWE9BDYnpMTA9ySEzL2HO1G7zJG1fsO3YRRYCOQIil9sv5_eb_p_4CacSesw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221191845</pqid></control><display><type>article</type><title>Mechanical properties of open-cell foam synthetic thoracic vertebrae</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Johnson, Amy E. ; Keller, Tony S.</creator><creatorcontrib>Johnson, Amy E. ; Keller, Tony S.</creatorcontrib><description>This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-007-3158-7</identifier><identifier>PMID: 17882383</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Biomimetics ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Bones ; Ceramics ; Chemistry and Materials Science ; Composites ; Compressive Strength ; Glass ; Humans ; Materials Science ; Materials Testing ; Natural Materials ; Polymer Sciences ; Porosity ; Regenerative Medicine/Tissue Engineering ; Stress, Mechanical ; Studies ; Surfaces and Interfaces ; Thin Films ; Thoracic Vertebrae</subject><ispartof>Journal of materials science. Materials in medicine, 2008-03, Vol.19 (3), p.1317-1323</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</citedby><cites>FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-007-3158-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-007-3158-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17882383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Amy E.</creatorcontrib><creatorcontrib>Keller, Tony S.</creatorcontrib><title>Mechanical properties of open-cell foam synthetic thoracic vertebrae</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.</description><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Bones</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compressive Strength</subject><subject>Glass</subject><subject>Humans</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stress, Mechanical</subject><subject>Studies</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Thoracic Vertebrae</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBsZXLiL3rwmmaXUJ1Tc6DpkMhk7ZR41mQr992aYQkGQrnLgfveRcxC6JHBLAORdIKBEiqPEjAiF5RGaEiEZ5oqpYzSFTEjMBYMJOgthBQA8E-IUTYhUijLFpujhzdmlaStr6mTtu7XzfeVC0pVJ1C22rq6TsjNNErZtv3R9ZZN-2Xljo_iJsMu9cefopDR1cBe7d4Y-nx4_5i948f78Or9fYMsZ6bGQPKOKUGZyWlorqOAsLQquMuGAO0OoS4HmsVAYmgPLUkUgy5jKhbCFStkM3Yxz46XfGxd63VRhONG0rtsELYFxpYAdBBnlJHrDD4IU0mgiH1Zf_wFX3ca38beaUkIyoqLPM0RGyPouBO9KvfZVY_xWE9BDYnpMTA9ySEzL2HO1G7zJG1fsO3YRRYCOQIil9sv5_eb_p_4CacSesw</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Johnson, Amy E.</creator><creator>Keller, Tony S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20080301</creationdate><title>Mechanical properties of open-cell foam synthetic thoracic vertebrae</title><author>Johnson, Amy E. ; Keller, Tony S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-574928123ab2fcc525436dd4895e04ea12e602bc52da2b03968109938b55cd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Bones</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compressive Strength</topic><topic>Glass</topic><topic>Humans</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stress, Mechanical</topic><topic>Studies</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Thoracic Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Amy E.</creatorcontrib><creatorcontrib>Keller, Tony S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Amy E.</au><au>Keller, Tony S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of open-cell foam synthetic thoracic vertebrae</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>19</volume><issue>3</issue><spage>1317</spage><epage>1323</epage><pages>1317-1323</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>This study presents comprehensive morphological and mechanical properties (static, dynamic) of open-cell rigid foams (Pacific Research Laboratories Inc. Vashon, WA) and a synthetic vertebral body derived from each of the foams. Synthetic vertebrae were comprised of a cylindrical open-cell foam core enclosed by a fiberglass resin cortex. The open-cell rigid foam was shown to have similar morphology and porosity as human vertebral cancellous bone, and exhibited a crush or fracture consolidation band typical of open-celled materials and cancellous bone. However, the foam material density was 40% lower than natural cancellous bone resulting in a lower compressive apparent strength and apparent modulus in comparison to human bone. During cyclic, mean compression fatigue tests, the synthetic vertebrae exhibited an initial apparent modulus, progressive modulus reduction, strain accumulation and S-N curve behaviour similar to human and animal vertebral cancellous bone. Synthetic open-cell foam vertebrae offer researchers an alternative to human vertebral bone for static and dynamic biomechanical experiments, including studies examining the effects of cement injection.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>17882383</pmid><doi>10.1007/s10856-007-3158-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2008-03, Vol.19 (3), p.1317-1323
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_70348803
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Biomimetics
Bone Substitutes - chemical synthesis
Bone Substitutes - chemistry
Bones
Ceramics
Chemistry and Materials Science
Composites
Compressive Strength
Glass
Humans
Materials Science
Materials Testing
Natural Materials
Polymer Sciences
Porosity
Regenerative Medicine/Tissue Engineering
Stress, Mechanical
Studies
Surfaces and Interfaces
Thin Films
Thoracic Vertebrae
title Mechanical properties of open-cell foam synthetic thoracic vertebrae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20open-cell%20foam%20synthetic%20thoracic%20vertebrae&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Johnson,%20Amy%20E.&rft.date=2008-03-01&rft.volume=19&rft.issue=3&rft.spage=1317&rft.epage=1323&rft.pages=1317-1323&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-007-3158-7&rft_dat=%3Cproquest_cross%3E1898143211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221191845&rft_id=info:pmid/17882383&rfr_iscdi=true