Computer Simulation of Methane Hydrate Cage Occupancy
Grand canonical Monte Carlo simulation results are presented for bulk sI methane hydrate. The description of hydrogen-bonded clathrate network allows the water molecules to move and rotate. A more idealized rigid structural model based on the van der Waals−Platteeuw (vdWP) theory is used for compari...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2007-03, Vol.111 (11), p.2886-2890 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2890 |
---|---|
container_issue | 11 |
container_start_page | 2886 |
container_title | The journal of physical chemistry. B |
container_volume | 111 |
creator | Sizov, Vladimir V Piotrovskaya, Elena M |
description | Grand canonical Monte Carlo simulation results are presented for bulk sI methane hydrate. The description of hydrogen-bonded clathrate network allows the water molecules to move and rotate. A more idealized rigid structural model based on the van der Waals−Platteeuw (vdWP) theory is used for comparison. Occupancy isotherms and pressure versus temperature occupancy diagrams are computed for temperatures below 260 K and pressures up to 400 bar. It is found that the results obtained with the vdWP-like model are in qualitative agreement with experiment, though this model fails to account for structural transformations of water network in the vicinity of the melting point. |
doi_str_mv | 10.1021/jp0658905 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70342832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70342832</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-be79d8068f496a1f2f485ee3e9a2ae8ace95cd9a9d79b5f92f21d1a8df2836863</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AgipvTg_-A9KLgoZqkTZoctegmbEzZvHgJWfuinf1l0oL77620zIuH8ALvw3uPL0LnBN8QTMnttsacCYnZARoTRrHfvehw-HOC-QidOLfFmDIq-DEakSgQIsRijFhcFXXbgPVWWdHmusmq0quMt4DmQ5fgzXap1Q14sX4Hb5kkba3LZHeKjozOHZwNdYJeHx_W8cyfL6dP8d3c1yGJGn8DkUwF5sKEkmtiqAkFAwhAaqpB6AQkS1KpZRrJDTOSGkpSokVqqAi44MEEXfVza1t9teAaVWQugTzvTqtapyIchB2lHbzuYWIr5ywYVdus0HanCFa_Gal9Rp29GIa2mwLSPzmE0gG_B5lr4Hvf1_ZT8SiImFo_r9T94mUqZ29cLTp_2XudOLWtWlt2mfyz-AeJW3uS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70342832</pqid></control><display><type>article</type><title>Computer Simulation of Methane Hydrate Cage Occupancy</title><source>ACS Publications</source><creator>Sizov, Vladimir V ; Piotrovskaya, Elena M</creator><creatorcontrib>Sizov, Vladimir V ; Piotrovskaya, Elena M</creatorcontrib><description>Grand canonical Monte Carlo simulation results are presented for bulk sI methane hydrate. The description of hydrogen-bonded clathrate network allows the water molecules to move and rotate. A more idealized rigid structural model based on the van der Waals−Platteeuw (vdWP) theory is used for comparison. Occupancy isotherms and pressure versus temperature occupancy diagrams are computed for temperatures below 260 K and pressures up to 400 bar. It is found that the results obtained with the vdWP-like model are in qualitative agreement with experiment, though this model fails to account for structural transformations of water network in the vicinity of the melting point.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp0658905</identifier><identifier>PMID: 17388408</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2007-03, Vol.111 (11), p.2886-2890</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-be79d8068f496a1f2f485ee3e9a2ae8ace95cd9a9d79b5f92f21d1a8df2836863</citedby><cites>FETCH-LOGICAL-a417t-be79d8068f496a1f2f485ee3e9a2ae8ace95cd9a9d79b5f92f21d1a8df2836863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0658905$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0658905$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17388408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sizov, Vladimir V</creatorcontrib><creatorcontrib>Piotrovskaya, Elena M</creatorcontrib><title>Computer Simulation of Methane Hydrate Cage Occupancy</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Grand canonical Monte Carlo simulation results are presented for bulk sI methane hydrate. The description of hydrogen-bonded clathrate network allows the water molecules to move and rotate. A more idealized rigid structural model based on the van der Waals−Platteeuw (vdWP) theory is used for comparison. Occupancy isotherms and pressure versus temperature occupancy diagrams are computed for temperatures below 260 K and pressures up to 400 bar. It is found that the results obtained with the vdWP-like model are in qualitative agreement with experiment, though this model fails to account for structural transformations of water network in the vicinity of the melting point.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0M9LwzAUB_AgipvTg_-A9KLgoZqkTZoctegmbEzZvHgJWfuinf1l0oL77620zIuH8ALvw3uPL0LnBN8QTMnttsacCYnZARoTRrHfvehw-HOC-QidOLfFmDIq-DEakSgQIsRijFhcFXXbgPVWWdHmusmq0quMt4DmQ5fgzXap1Q14sX4Hb5kkba3LZHeKjozOHZwNdYJeHx_W8cyfL6dP8d3c1yGJGn8DkUwF5sKEkmtiqAkFAwhAaqpB6AQkS1KpZRrJDTOSGkpSokVqqAi44MEEXfVza1t9teAaVWQugTzvTqtapyIchB2lHbzuYWIr5ywYVdus0HanCFa_Gal9Rp29GIa2mwLSPzmE0gG_B5lr4Hvf1_ZT8SiImFo_r9T94mUqZ29cLTp_2XudOLWtWlt2mfyz-AeJW3uS</recordid><startdate>20070322</startdate><enddate>20070322</enddate><creator>Sizov, Vladimir V</creator><creator>Piotrovskaya, Elena M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070322</creationdate><title>Computer Simulation of Methane Hydrate Cage Occupancy</title><author>Sizov, Vladimir V ; Piotrovskaya, Elena M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-be79d8068f496a1f2f485ee3e9a2ae8ace95cd9a9d79b5f92f21d1a8df2836863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sizov, Vladimir V</creatorcontrib><creatorcontrib>Piotrovskaya, Elena M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sizov, Vladimir V</au><au>Piotrovskaya, Elena M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Simulation of Methane Hydrate Cage Occupancy</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2007-03-22</date><risdate>2007</risdate><volume>111</volume><issue>11</issue><spage>2886</spage><epage>2890</epage><pages>2886-2890</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Grand canonical Monte Carlo simulation results are presented for bulk sI methane hydrate. The description of hydrogen-bonded clathrate network allows the water molecules to move and rotate. A more idealized rigid structural model based on the van der Waals−Platteeuw (vdWP) theory is used for comparison. Occupancy isotherms and pressure versus temperature occupancy diagrams are computed for temperatures below 260 K and pressures up to 400 bar. It is found that the results obtained with the vdWP-like model are in qualitative agreement with experiment, though this model fails to account for structural transformations of water network in the vicinity of the melting point.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17388408</pmid><doi>10.1021/jp0658905</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2007-03, Vol.111 (11), p.2886-2890 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_70342832 |
source | ACS Publications |
title | Computer Simulation of Methane Hydrate Cage Occupancy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Simulation%20of%20Methane%20Hydrate%20Cage%20Occupancy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Sizov,%20Vladimir%20V&rft.date=2007-03-22&rft.volume=111&rft.issue=11&rft.spage=2886&rft.epage=2890&rft.pages=2886-2890&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp0658905&rft_dat=%3Cproquest_cross%3E70342832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70342832&rft_id=info:pmid/17388408&rfr_iscdi=true |