On the optimum form of an aperture for a confinement of the optically excited electric near field

A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2008-02, Vol.229 (2), p.223-227
Hauptverfasser: BORTCHAGOVSKY, E, COLAS DES FRANCS, G, NABER, A, FISCHER, U.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 2
container_start_page 223
container_title Journal of microscopy (Oxford)
container_volume 229
creator BORTCHAGOVSKY, E
COLAS DES FRANCS, G
NABER, A
FISCHER, U.C
description A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.
doi_str_mv 10.1111/j.1365-2818.2008.01890.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70340358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34274640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</originalsourceid><addsrcrecordid>eNqNkUtP3DAUha2qqEyn_QvFq-4Srl-Js2BRoT6oQCyAteU4161HeUztRJ359ySdKSzBG1vX37lX9xxCKIOczed8kzNRqIxrpnMOoHNguoJ894asnj7ekhUA5xkvOZyS9yltYCaVhnfklGkBEspiRextT8ffSIftGLqpo36IHR08tT21W4zjFHGpUUvd0PvQY4f9uAD_Rc627Z7izoURG4otujEGR3u0kfqAbfOBnHjbJvx4vNfk4dvX-8sf2fXt96vLL9eZE6KErPY1MOUkF7K2vFLgqgLnpWRRcK6waThophqLQqsKBa-4rESJXtZVI8HWYk0-H_pu4_BnwjSaLiSHbWt7HKZkShAShNIvgkLyUhYzuyb6ALo4pBTRm20MnY17w8AsOZiNWew2i91mycH8y8HsZumn44yp7rB5Fh6Nn4GLA_A3tLh_dWPz8-Zqec36s4Pe28HYXzEk83DHgYkZLhToSjwCIqee2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34274640</pqid></control><display><type>article</type><title>On the optimum form of an aperture for a confinement of the optically excited electric near field</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>BORTCHAGOVSKY, E ; COLAS DES FRANCS, G ; NABER, A ; FISCHER, U.C</creator><creatorcontrib>BORTCHAGOVSKY, E ; COLAS DES FRANCS, G ; NABER, A ; FISCHER, U.C</creatorcontrib><description>A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/j.1365-2818.2008.01890.x</identifier><identifier>PMID: 18304076</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Apertures ; diffraction theory ; nano-optics ; Near-field optics</subject><ispartof>Journal of microscopy (Oxford), 2008-02, Vol.229 (2), p.223-227</ispartof><rights>2008 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</citedby><cites>FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2818.2008.01890.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2818.2008.01890.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18304076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BORTCHAGOVSKY, E</creatorcontrib><creatorcontrib>COLAS DES FRANCS, G</creatorcontrib><creatorcontrib>NABER, A</creatorcontrib><creatorcontrib>FISCHER, U.C</creatorcontrib><title>On the optimum form of an aperture for a confinement of the optically excited electric near field</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.</description><subject>Apertures</subject><subject>diffraction theory</subject><subject>nano-optics</subject><subject>Near-field optics</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkUtP3DAUha2qqEyn_QvFq-4Srl-Js2BRoT6oQCyAteU4161HeUztRJ359ySdKSzBG1vX37lX9xxCKIOczed8kzNRqIxrpnMOoHNguoJ894asnj7ekhUA5xkvOZyS9yltYCaVhnfklGkBEspiRextT8ffSIftGLqpo36IHR08tT21W4zjFHGpUUvd0PvQY4f9uAD_Rc627Z7izoURG4otujEGR3u0kfqAbfOBnHjbJvx4vNfk4dvX-8sf2fXt96vLL9eZE6KErPY1MOUkF7K2vFLgqgLnpWRRcK6waThophqLQqsKBa-4rESJXtZVI8HWYk0-H_pu4_BnwjSaLiSHbWt7HKZkShAShNIvgkLyUhYzuyb6ALo4pBTRm20MnY17w8AsOZiNWew2i91mycH8y8HsZumn44yp7rB5Fh6Nn4GLA_A3tLh_dWPz8-Zqec36s4Pe28HYXzEk83DHgYkZLhToSjwCIqee2g</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>BORTCHAGOVSKY, E</creator><creator>COLAS DES FRANCS, G</creator><creator>NABER, A</creator><creator>FISCHER, U.C</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200802</creationdate><title>On the optimum form of an aperture for a confinement of the optically excited electric near field</title><author>BORTCHAGOVSKY, E ; COLAS DES FRANCS, G ; NABER, A ; FISCHER, U.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Apertures</topic><topic>diffraction theory</topic><topic>nano-optics</topic><topic>Near-field optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BORTCHAGOVSKY, E</creatorcontrib><creatorcontrib>COLAS DES FRANCS, G</creatorcontrib><creatorcontrib>NABER, A</creatorcontrib><creatorcontrib>FISCHER, U.C</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BORTCHAGOVSKY, E</au><au>COLAS DES FRANCS, G</au><au>NABER, A</au><au>FISCHER, U.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the optimum form of an aperture for a confinement of the optically excited electric near field</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2008-02</date><risdate>2008</risdate><volume>229</volume><issue>2</issue><spage>223</spage><epage>227</epage><pages>223-227</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><abstract>A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18304076</pmid><doi>10.1111/j.1365-2818.2008.01890.x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2720
ispartof Journal of microscopy (Oxford), 2008-02, Vol.229 (2), p.223-227
issn 0022-2720
1365-2818
language eng
recordid cdi_proquest_miscellaneous_70340358
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Apertures
diffraction theory
nano-optics
Near-field optics
title On the optimum form of an aperture for a confinement of the optically excited electric near field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20optimum%20form%20of%20an%20aperture%20for%20a%20confinement%20of%20the%20optically%20excited%20electric%20near%20field&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=BORTCHAGOVSKY,%20E&rft.date=2008-02&rft.volume=229&rft.issue=2&rft.spage=223&rft.epage=227&rft.pages=223-227&rft.issn=0022-2720&rft.eissn=1365-2818&rft_id=info:doi/10.1111/j.1365-2818.2008.01890.x&rft_dat=%3Cproquest_cross%3E34274640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34274640&rft_id=info:pmid/18304076&rfr_iscdi=true