On the optimum form of an aperture for a confinement of the optically excited electric near field
A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined sp...
Gespeichert in:
Veröffentlicht in: | Journal of microscopy (Oxford) 2008-02, Vol.229 (2), p.223-227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Journal of microscopy (Oxford) |
container_volume | 229 |
creator | BORTCHAGOVSKY, E COLAS DES FRANCS, G NABER, A FISCHER, U.C |
description | A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot. |
doi_str_mv | 10.1111/j.1365-2818.2008.01890.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70340358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34274640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</originalsourceid><addsrcrecordid>eNqNkUtP3DAUha2qqEyn_QvFq-4Srl-Js2BRoT6oQCyAteU4161HeUztRJ359ySdKSzBG1vX37lX9xxCKIOczed8kzNRqIxrpnMOoHNguoJ894asnj7ekhUA5xkvOZyS9yltYCaVhnfklGkBEspiRextT8ffSIftGLqpo36IHR08tT21W4zjFHGpUUvd0PvQY4f9uAD_Rc627Z7izoURG4otujEGR3u0kfqAbfOBnHjbJvx4vNfk4dvX-8sf2fXt96vLL9eZE6KErPY1MOUkF7K2vFLgqgLnpWRRcK6waThophqLQqsKBa-4rESJXtZVI8HWYk0-H_pu4_BnwjSaLiSHbWt7HKZkShAShNIvgkLyUhYzuyb6ALo4pBTRm20MnY17w8AsOZiNWew2i91mycH8y8HsZumn44yp7rB5Fh6Nn4GLA_A3tLh_dWPz8-Zqec36s4Pe28HYXzEk83DHgYkZLhToSjwCIqee2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34274640</pqid></control><display><type>article</type><title>On the optimum form of an aperture for a confinement of the optically excited electric near field</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>BORTCHAGOVSKY, E ; COLAS DES FRANCS, G ; NABER, A ; FISCHER, U.C</creator><creatorcontrib>BORTCHAGOVSKY, E ; COLAS DES FRANCS, G ; NABER, A ; FISCHER, U.C</creatorcontrib><description>A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/j.1365-2818.2008.01890.x</identifier><identifier>PMID: 18304076</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Apertures ; diffraction theory ; nano-optics ; Near-field optics</subject><ispartof>Journal of microscopy (Oxford), 2008-02, Vol.229 (2), p.223-227</ispartof><rights>2008 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</citedby><cites>FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2818.2008.01890.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2818.2008.01890.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18304076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BORTCHAGOVSKY, E</creatorcontrib><creatorcontrib>COLAS DES FRANCS, G</creatorcontrib><creatorcontrib>NABER, A</creatorcontrib><creatorcontrib>FISCHER, U.C</creatorcontrib><title>On the optimum form of an aperture for a confinement of the optically excited electric near field</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.</description><subject>Apertures</subject><subject>diffraction theory</subject><subject>nano-optics</subject><subject>Near-field optics</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkUtP3DAUha2qqEyn_QvFq-4Srl-Js2BRoT6oQCyAteU4161HeUztRJ359ySdKSzBG1vX37lX9xxCKIOczed8kzNRqIxrpnMOoHNguoJ894asnj7ekhUA5xkvOZyS9yltYCaVhnfklGkBEspiRextT8ffSIftGLqpo36IHR08tT21W4zjFHGpUUvd0PvQY4f9uAD_Rc627Z7izoURG4otujEGR3u0kfqAbfOBnHjbJvx4vNfk4dvX-8sf2fXt96vLL9eZE6KErPY1MOUkF7K2vFLgqgLnpWRRcK6waThophqLQqsKBa-4rESJXtZVI8HWYk0-H_pu4_BnwjSaLiSHbWt7HKZkShAShNIvgkLyUhYzuyb6ALo4pBTRm20MnY17w8AsOZiNWew2i91mycH8y8HsZumn44yp7rB5Fh6Nn4GLA_A3tLh_dWPz8-Zqec36s4Pe28HYXzEk83DHgYkZLhToSjwCIqee2g</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>BORTCHAGOVSKY, E</creator><creator>COLAS DES FRANCS, G</creator><creator>NABER, A</creator><creator>FISCHER, U.C</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200802</creationdate><title>On the optimum form of an aperture for a confinement of the optically excited electric near field</title><author>BORTCHAGOVSKY, E ; COLAS DES FRANCS, G ; NABER, A ; FISCHER, U.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3370-bfb015c4234ba2950c96e890466225edd20815dae3859e32924937ef4b9d40ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Apertures</topic><topic>diffraction theory</topic><topic>nano-optics</topic><topic>Near-field optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BORTCHAGOVSKY, E</creatorcontrib><creatorcontrib>COLAS DES FRANCS, G</creatorcontrib><creatorcontrib>NABER, A</creatorcontrib><creatorcontrib>FISCHER, U.C</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BORTCHAGOVSKY, E</au><au>COLAS DES FRANCS, G</au><au>NABER, A</au><au>FISCHER, U.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the optimum form of an aperture for a confinement of the optically excited electric near field</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2008-02</date><risdate>2008</risdate><volume>229</volume><issue>2</issue><spage>223</spage><epage>227</epage><pages>223-227</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><abstract>A triangular nanoaperture in an aluminium film was used previously as a probe in a scanning near-field optical microscope to image single fluorescent molecules with an optical resolution down to 30 nm. The high-resolution capability of the triangular aperture probe is because of a highly confined spot of the electric near field which emerges at an edge of the aperture, when the incident light is polarized perpendicular to this edge. Previous numerical calculations of the near-field distribution of a triangular aperture in a planar metal film using the field susceptibility technique yielded a nearly quantitative agreement with the experimental results. Using the same numerical technique we now explored the possibility for a further confinement of the electric near field and an increase in its intensity by modifications of the form of a triangular aperture. By introducing a kink on an edge pointing into the aperture, an arrow-shaped aperture is formed with one convex and three concave metal corners. It turns out that this form leads to a substantial further confinement of the near-field intensity at the convex corner. By extending the wings of this arrow-shaped aperture a further 5-fold increase of the intensity can be obtained without a deterioration of the confined spot.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18304076</pmid><doi>10.1111/j.1365-2818.2008.01890.x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2720 |
ispartof | Journal of microscopy (Oxford), 2008-02, Vol.229 (2), p.223-227 |
issn | 0022-2720 1365-2818 |
language | eng |
recordid | cdi_proquest_miscellaneous_70340358 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | Apertures diffraction theory nano-optics Near-field optics |
title | On the optimum form of an aperture for a confinement of the optically excited electric near field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20optimum%20form%20of%20an%20aperture%20for%20a%20confinement%20of%20the%20optically%20excited%20electric%20near%20field&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=BORTCHAGOVSKY,%20E&rft.date=2008-02&rft.volume=229&rft.issue=2&rft.spage=223&rft.epage=227&rft.pages=223-227&rft.issn=0022-2720&rft.eissn=1365-2818&rft_id=info:doi/10.1111/j.1365-2818.2008.01890.x&rft_dat=%3Cproquest_cross%3E34274640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34274640&rft_id=info:pmid/18304076&rfr_iscdi=true |