Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome
Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid in...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2008-03, Vol.53 (5), p.842-853 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 853 |
---|---|
container_issue | 5 |
container_start_page | 842 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 53 |
creator | Odom, Obed W Baek, Kwang-Hyun Dani, Radhika N Herrin, David L |
description | Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16Sspec) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16Sspec plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome. |
doi_str_mv | 10.1111/j.1365-313x.2007.03376.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70335946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434590551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6506-87543429c690462cc8b4627610704fd45ef1ff71385c9de8d62962a1938c17bb3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCXwALCXYJfsVOFizQiKcqgUQrsbMc56bJ4MTBTtSZTX87DjOAxAa8ubbud4_tcxDClOQ0rZe7nHJZZJzyfc4IUTnhXMl8fw9tfjW-3kcbUkmSKUHZGTqPcUcIVVyKh-iMloRLRsQG3W07Z4ZD4wc_moht53zwkzNxTgcz4iUCjp0PM276OEGI0OAAE5jUN2ODh8XN_eQAT2bubs0h4tmvgOkDNrjxS-0gi3NY2TqA-Yb7Ec8d4BsY_QCP0IPWuAiPT_UCXb99c7V9n11-evdh-_oys7IgMitVIbhglZUVEZJZW9apKEmJIqJtRAEtbVtFeVnYqoGykaySzNCKl5aquuYX6MVRdwr--wJx1kMfLThnRvBL1CoZWFRC_hOkyVJGihV89he480sY0yc0o1wkrYomqDxCNvgYA7R6Cv1gwkFTotck9U6vgek1ML0mqX8mqfdp9MlJf6kHaP4MnqJLwPMTYKI1rk0W2z7-5hihouCqTNyrI3fbOzj89wP01eeP6y7NPz3Ot8ZrcxPSHddfkjonpJSrw_wHTWjDKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213494691</pqid></control><display><type>article</type><title>Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Odom, Obed W ; Baek, Kwang-Hyun ; Dani, Radhika N ; Herrin, David L</creator><creatorcontrib>Odom, Obed W ; Baek, Kwang-Hyun ; Dani, Radhika N ; Herrin, David L</creatorcontrib><description>Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16Sspec) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16Sspec plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313x.2007.03376.x</identifier><identifier>PMID: 18036204</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; Base Sequence ; Biological and medical sciences ; Chlamydomonas ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; chloroplast DNA ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA Repair ; double-strand break ; Flowers & plants ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes ; Genome, Plant ; Genomics ; intron homing ; Introns - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecules ; Mutagenesis. Repair ; Mutation ; SDSA ; SSA ; Transformation, Genetic</subject><ispartof>The Plant journal : for cell and molecular biology, 2008-03, Vol.53 (5), p.842-853</ispartof><rights>2008 The Authors</rights><rights>2008 INIST-CNRS</rights><rights>Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6506-87543429c690462cc8b4627610704fd45ef1ff71385c9de8d62962a1938c17bb3</citedby><cites>FETCH-LOGICAL-c6506-87543429c690462cc8b4627610704fd45ef1ff71385c9de8d62962a1938c17bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2007.03376.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2007.03376.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20145378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18036204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odom, Obed W</creatorcontrib><creatorcontrib>Baek, Kwang-Hyun</creatorcontrib><creatorcontrib>Dani, Radhika N</creatorcontrib><creatorcontrib>Herrin, David L</creatorcontrib><title>Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16Sspec) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16Sspec plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>chloroplast DNA</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>double-strand break</subject><subject>Flowers & plants</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genome, Plant</subject><subject>Genomics</subject><subject>intron homing</subject><subject>Introns - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecules</subject><subject>Mutagenesis. Repair</subject><subject>Mutation</subject><subject>SDSA</subject><subject>SSA</subject><subject>Transformation, Genetic</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EotPCXwALCXYJfsVOFizQiKcqgUQrsbMc56bJ4MTBTtSZTX87DjOAxAa8ubbud4_tcxDClOQ0rZe7nHJZZJzyfc4IUTnhXMl8fw9tfjW-3kcbUkmSKUHZGTqPcUcIVVyKh-iMloRLRsQG3W07Z4ZD4wc_moht53zwkzNxTgcz4iUCjp0PM276OEGI0OAAE5jUN2ODh8XN_eQAT2bubs0h4tmvgOkDNrjxS-0gi3NY2TqA-Yb7Ec8d4BsY_QCP0IPWuAiPT_UCXb99c7V9n11-evdh-_oys7IgMitVIbhglZUVEZJZW9apKEmJIqJtRAEtbVtFeVnYqoGykaySzNCKl5aquuYX6MVRdwr--wJx1kMfLThnRvBL1CoZWFRC_hOkyVJGihV89he480sY0yc0o1wkrYomqDxCNvgYA7R6Cv1gwkFTotck9U6vgek1ML0mqX8mqfdp9MlJf6kHaP4MnqJLwPMTYKI1rk0W2z7-5hihouCqTNyrI3fbOzj89wP01eeP6y7NPz3Ot8ZrcxPSHddfkjonpJSrw_wHTWjDKw</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Odom, Obed W</creator><creator>Baek, Kwang-Hyun</creator><creator>Dani, Radhika N</creator><creator>Herrin, David L</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200803</creationdate><title>Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome</title><author>Odom, Obed W ; Baek, Kwang-Hyun ; Dani, Radhika N ; Herrin, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6506-87543429c690462cc8b4627610704fd45ef1ff71385c9de8d62962a1938c17bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>chloroplast DNA</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>double-strand break</topic><topic>Flowers & plants</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genome, Plant</topic><topic>Genomics</topic><topic>intron homing</topic><topic>Introns - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecules</topic><topic>Mutagenesis. Repair</topic><topic>Mutation</topic><topic>SDSA</topic><topic>SSA</topic><topic>Transformation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odom, Obed W</creatorcontrib><creatorcontrib>Baek, Kwang-Hyun</creatorcontrib><creatorcontrib>Dani, Radhika N</creatorcontrib><creatorcontrib>Herrin, David L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odom, Obed W</au><au>Baek, Kwang-Hyun</au><au>Dani, Radhika N</au><au>Herrin, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2008-03</date><risdate>2008</risdate><volume>53</volume><issue>5</issue><spage>842</spage><epage>853</epage><pages>842-853</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16Sspec) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16Sspec plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>18036204</pmid><doi>10.1111/j.1365-313x.2007.03376.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2008-03, Vol.53 (5), p.842-853 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_70335946 |
source | MEDLINE; Wiley Online Library Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Animals Base Sequence Biological and medical sciences Chlamydomonas Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism chloroplast DNA Chloroplasts - genetics Chloroplasts - metabolism Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA Repair double-strand break Flowers & plants Freshwater Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Genes Genome, Plant Genomics intron homing Introns - genetics Molecular and cellular biology Molecular genetics Molecules Mutagenesis. Repair Mutation SDSA SSA Transformation, Genetic |
title | Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20chloroplasts%20can%20use%20short%20dispersed%20repeats%20and%20multiple%20pathways%20to%20repair%20a%20double-strand%20break%20in%20the%20genome&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Odom,%20Obed%20W&rft.date=2008-03&rft.volume=53&rft.issue=5&rft.spage=842&rft.epage=853&rft.pages=842-853&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313x.2007.03376.x&rft_dat=%3Cproquest_cross%3E1434590551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213494691&rft_id=info:pmid/18036204&rfr_iscdi=true |